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ABSTRACT

Purpose: The objective was to study the influence of cutting vibrations in hard turning of AISI 1045 steel.
Design/methodology/approach: A design of experiments using a complete factorial was used in the 
experiments. The specimens were tempered and quenched with 53 HRC. A piezoelectric dynamometer for turning 
with an acquisition data system was used in the measurements.
Findings: The results showed excellent correlation between the model and results and showed that the frequency 
amplitudes increase the model reliability by 5%.
Research limitations/implications: The instrumentation of machine and its correlation with the amplitudes 
of frequencies from data system acquisition could personalize the models for each experiment on the machines.
Originality/value: The paper uses a commercial piece and provides important information for the improvements 
in the roughness of hardened steel, which is an important factor for the components surface integrity.
Keywords: Machining; Turning; Vibration; Surface roughness
Reference to this paper should be given in the following way: 
S. Delijaicov, F. Leonardi, E.C. Bordinassi, G.F. Batalha, Improved model to predict machined surface roughness 
based on the cutting vibrations signal during hard turning, Archives of Materials Science and Engineering 45/2 
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SHORT PAPER

1.	� Introduction1. Introduction 
Due to the interaction between the machining components, the 

relative vibration of workpiece and tool is an inextricable part 
during a machining process and it has detrimental effects on the 
machined surface [1].  

Since surface quality is a great concern in the manufacturing 
industry, great attention has been paid to the effects of cutting 

vibration on surface finish. In machining processes, it is necessary 
to attain the desired surface quality in order to produce parts 
providing the required functioning. The surface quality also 
defines some mechanical properties of the product, such as wear 
resistance. Being such a considerable quality, surface quality is 
influenced by various parameters. It will be costly and time-
consuming to acquire the knowledge of appropriate cutting 
parameters. At this point, surface roughness prediction will be 
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helpful, which is mostly based on cutting parameters (cutting 
speed, feed rate, and cutting depth) and sometimes some other 
parameters [2].  

The factors which result in cutting vibration are very 
complex, in which the dynamics of machine tool, workpiece 
materials, tool parameters and cutting parameters are all included. 
A simple structure with a simple degree of freedom system can be 
modelled by a combination of mass, spring and damping. If this 
system receives a hammer blow for a very short period, or when it 
is at rest and statically deviates from its equilibrium and leads the 
system to experiences free vibration. The amplitude of vibrations 
decays with time as a function of the system damping constant. 
The frequencies of the vibrations are mainly dominated by the 
stiffness and the mass and are slightly influenced by the viscous 
damping constant, which is very small in mechanical structures 
[3]. The cutting process dynamic model cannot predict the exact 
cutting vibration since most of them are great simplified and, to 
give a more reliable explanation of the correlation between 
surface generation and cutting vibrations, the vibrational state of 
the cutting process should be available. 

At least two types of vibrations, force vibration and self-
excited vibration were identified in the machining process.  Force 
vibration is a result of certain periodical forces that exist within 
the machine. The source of these forces can be bad gear drives, 
unbalanced machine-tool components, misalignment of motors 
and pumps. Self-excited vibration, which is also known as chatter, 
is caused by the interaction of the chip removal process and the 
structure of the machine tool, which results in disturbances in the 
cutting zone. Chatter always indicates defects on the machined 
surface [4]. One of the factors that has the most influence on the 
machined surface and can deteriorate the surface quality is the 
presence of tool vibrations during the cutting process [5]. 

Precision hard turning has attracted great interest since the 
1970s because it potentially provides an alternative to 
conventional grinding in machining high precision and high 
hardness components. This technology significantly reduces the 
production time, tooling costs and the capital investment for low 
volume finishing applications, such as dies, gears, shafts and 
bearings. In particular, it can often cut manufacturing costs, 
decrease production time, and improve overall product quality [6]. 
It concerns the removal of materials the hardness of which is 
higher than 45 HRC. This operation is performed with advanced 
tool materials, for example, cubic boron nitride (CBN) which 
induces a significant benefit such as short cutting cycle time, 
process flexibility, low cut surface roughness, high material 
removal rate and environment safe when machining without 
cutting fluid. It is also noticed that this process benefits from the 
motion capability of modern machine tools, which allow 
producing various contour geometries and generating complex 
forms [7]. 

The surface finish is an important factor for evaluating the 
quality of products. Surface roughness “Ra” is mostly used as an 
index to determine the surface finish in the machining process. 
Modelling techniques for the prediction of Ra can be classified 
into three groups which are experimental models, analytical 
models and artificial intelligence (AI)-based models [8]. 

The estimation of surface roughness by dynamic simulation of 
the system is very difficult because determining the machine tool 
parameters is not easy and parameters including damping and 

stiffness change in the course of time. The structure of surface 
roughness is very complicated and the calculation of its values 
through analytical equations is very difficult. Today, approximate 
solutions are totally inadequate for precision manufacture. 
Currently, it is approximately known which machining method 
can give what surface quality. Moreover, it is possible to obtain a 
desirable surface roughness value using conventional methods, 
but this approach is time-consuming because of repetitive and 
empirical processes [9]. 

The surface roughness greatly influences the surface integrity 
of products and it is controlled in most machined parts, mainly in 
hardened machining. The method of objective judgments and 
evaluation of the surface roughness has a long history. At first, 
a sinusoidal model of unevenness was used, when a quantity HSK 
(analogy of the effective value of alternating current) was used as 
a parameter for evaluation. Later, a parameter Ra (analogy of the 
mean value of alternating current) was preferred together with 
some further parameters [10]. In connection with a new 
conception of a geometrical specification of products, some more 
sophisticated systems for the assessment and evaluation of surface 
structure was created. This is the system which is regulated by 
currently valid standards. The surface structure is divided into 
components according to the pitch of overall unevenness. There 
are three components in the surface structure: a component with 
the smallest pitch creating surface roughness, a component called 
waviness of surface and a component with the greatest pitch of 
unevenness, called the basic profile. By the vibration acquisition 
signal, it is possible to try to predict what frequencies account for 
each one of these components. 

The objective is to study the influence of the vibration signal 
on the surface roughness of machined parts.  

 
2. Methods and materials 

 
The hard turning testes had been carried out in cylindrical 

workpieces (Figure 1) of steel ABNT 1045 (Table 1), thermally 
hardened for quenching and tempering. The thermal treatment 
was carried out in a Lindberg oven with atmosphere controlled by 
vacuum pump. The initial hardness was measured with a digital 
Micron Hardness Tester Shimadzu, model HMV2. The measured 
values were near 53 HRC ± 2 HRC, for a load of 1.5 kN, with 
pre-load of 100 N. 

 
 

 
 

Fig. 1. Machined workpiece geometry 
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Table 1.  
Chemical composition of steel ABNT 1045 

 C Fe Mn P S 
Minimum % 0.42 98.51 0.6 0.04 0.05 
Maximum % 0.5 98.98 0.9   

 
Table 1 shows the chemical composition of the machined 

steel. 
Hard steel turning demands a great rigidity from 

machining and great cutting speeds for the surface finishing of 
the machined materials that must be comparable to grinding 
operations. Aiming to fulfil with these requirements, a turning 
centre - Romi, Centur model 30D was used. 

PCBN inserts VBGW160404S01020F (Sandvik), were 
used in the experimental work with PDJNR/L 2525M15 
(Sandvik) clamp tool holder. 

The cutting forces were measured using a PCB 
piezoelectric tri-axial load cell (model 260 A02) and mounted 
in the tool holder as shown in Figure 2. The data acquisition 
system used was the HBM Spider 8 with Catman Easy 
software (Figure 3). The data sampling frequency was kept at 
9600 Hz per channel and the cutting vibration signals were 
evaluated by the measured cutting forces with the Catman 
software. 

 
 

 
 

Fig. 2. Cutting force dynamometer 
 
 

The average surface roughness measurements (Ra) were 
performed in the Mitutoyo Surftest – 301 (Cut-off = 0.8 and 
n=5). Three measurements of the surface roughness were 
taken at different locations and the average value was used. 

The machining tests were carried out through an 
experimental planning composed by a central point; in order 
provide reliability to the results and to know the relation 
between the independent and the dependent variables. Twenty 
experimental runs composed of eight factorial points, plus six 
centre points and six axial points were carried out. Table 2 
shows the experimental planning. Statistica  software was 
used for analysing the results. 

 
 

Fig. 3. The data acquisition system 
 

Table 2. 
Experimental planning 

Piece Cutting speed 
[m/min] 

Feed rate 
[mm/rev] 

Cutting 
depth 
[mm] 

1 120 0.08 0.025 
2 120 0.09 0.15 
3 120 0.16 0.025 
4 120 0.16 0.15 
5 210 0.08 0.025 
6 210 0.08 0.15 
7 210 0.16 0.025 
8 210 0.16 0.15 
9 89 0.12 0.0875 
10 240 0.12 0.0875 
11 165 0.05 0.0875 
12 165 0.19 0.0875 
13 165 0.12 0.0176 
14 165 0.12 0.1926 
15 165 0.12 0.0875 
16 165 0.12 0.0875 
17 165 0.12 0.0875 
18 165 0.12 0.0875 
19 165 0.12 0.0875 
20 165 0.12 0.0875 

 
 

3. Results and discussion 
 
 
3.1. Acquisition and data treatment 
 

In a visual inspection of a graph in function of time, even a 
signal that has information can be only a form of noisy wave. 
Thus, it is common to the same, convert signal to the frequency 
where it can be easier to distinguish what is information from 

3.1.	� Acquisition and data treatment
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what is noise. However, some cares are necessary so that the 
frequency spectre does not also mask the information. 

Firstly, it is recommended to conduct an analogical filtering 
of the signal before it is shown by the data acquisition system. 
This consists in reducing the aliasing effect, that is, spectre 
overlapping. In this case, the sampling frequency of the 
acquisition system is 9600 Hz. Then an analogical filter low 
pass with cut frequency in 4800 Hz must be used to remove all 
the frequencies of this value. 

The piezoelectric sensor used in the cutting forces 
measurements presents an exponential decline characteristic 
when submitted to a constant pressure. This behaviour is not 
desired, as it modifies the measure. Assuming that the cutting 
forces have a constant value measured during the machining, the 
decline effect can be removed numerically. In this work, the 
exponential decline is approached by a linear decline and the 
signal is restored during pre-processing data. 

Aiming to prevent the emptying or tails in the rays of the 
spectre, a window in function of time must be applied. This 
emptying makes the spectre dirtier and must be minimized for 
the purposes of the signal analysis. 

Another defect that can be present in the spectre is low 
resolution. When few points are used, a ray of the spectre is 
little characterized. In this situation, the values of amplitude and 
the frequency of the rays are inexact. To prevent this problem, 
the amount of points must be increased by “zeros” added to the 
original signal. Although this solves the resolution problem, the 
spectre will continue loaded by the spectral noise. 

A solution to reduce the spectral noise is to divide the signal 
into segments and calculate the spectre for each one of these 
stretches that must be sampled individually. Thus, a spectre 
medium is generated that reduces the random error of a factor 
that is given by the square shaped root of the number of 

segments. In practice, it is common to use 100 segments. One 
alternative technique to reduce the spectral noise is to show the 
original signal, generating a spectre with high resolution and 
then apply a digital filtering low passes in the gotten signal, 
reducing the noise. In general, the first of the two alternatives is 
normally used. 

It is noticed that it is not trivial to infer the excellent 
information of this signal, and in this in case, it is more 
comfortable in the frequency domain 

The graph in Figure (4b) shows the spectre of this signal, in 
which its amplitude is raised to the square to represent the 
power of each spectral component. The main component is 
observed to have a frequency near 30 Hz, whereas the two next 
ones have 60 Hz and 90 Hz. 

Here the spectral information is gotten by the “Fast Fourier 
Transform” (FFT). The value of the amplitude of each ray was 
raised to the square to characterize the power of each 
contribution. 

Later that the exponential decline was restored in the pre-
processing data, the cutting forces signal has similar results to 
Figure (4a), in which Hz  is one of the acquired signal of the 
tests with a frequency of 9600 Hz.  . 

Bernardos & Vosniakos [11] showed that the surface 
roughness refers to superimposed orders of deviation from the 
normal surface. These orders refer to forms and waviness 
(machine tool errors, setup errors, deformation of the 
workpiece, material workpiece inhomogeneity), to periodic 
grooves, cracks and dilapidations (connected to the shape and 
condition of the cutting edges, chip formation and process 
kinematics) and to materials workpiece structure (connected to 
slip, diffusion, oxidation, residual stress and other mechanisms) 
in accordance with [12].  
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Fig. 4. Cutting forces in the time and frequency 
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Table 3. 
Shows the results for all the experiments 

Piece Freq
[Hz] Amp Freq

[Hz] Amp Freq
[Hz] Amp Freq

[Hz] Amp Freq
[Hz] Amp Freq

[Hz] Amp Freq
[Hz] Amp Freq

[Hz] Amp Freq
[Hz] Amp Freq

[Hz] Amp

1   10 0.34         24 0.97       

2   10          24 0.67       

3   10 0.17         24 1.44       

4   10          24 6.5       

5       17 0.7   21 0.5       42 1.57 

6       17 0.86   21 0.36       42 1.78 

7 8 0.84     17 0.71           42 5.22 

8                   42 5.87 

9 8 0.84     17 27.6           42 1.26 

10         19 0.24   24 0.14   36 4.6   

11    0.1   17 0.62             

12    0.35           32 17.6     

13    1.1   17 0.61       32 2.47     

14    0.57           32 5.4     

15    0.77           32 1.5     

16    0.35           32 5.85     

17    0.56           32 5.51     

18    0.44           32 10.5     

19    0.91   17 0.42       32 4.94   42 0.3 

20     15 0.52 17 0.32         36 1.18   

3.2. Experimental results and discussion 

Table 3 shows the results of the FFTs signals for the 
experimental planning (only part of the results are shown and 
that is the most important, the continuation with higher values 
are multiples of the red values). The values are shown in 
crescent order from left to right. The red values correspond to 
the machine revolution, and are the largest values. The 
amplitudes values were adopted as an influence criterion on the 
dynamic of the process under the piece roughness. The values 
shown on the left side of the table are smaller than the red 
values and are relative to the error form of the piece. Only part 
of the results is shown and that is the most important, the 
continuations with higher values are multiples of the red values. 

Table 4 shows the results for all the experiments. 

3.3. Factorial modelling 

With all the values shown in Table 4, a factorial modelling 
was made. The goal of this analysis was to evaluate the 
dependency of the roughness on all the parameters: cutting speed 
(V), feed rate (f), cutting depth and vibration amplitude (amp). 
The significance level was set to 0.05. Statistica  software was 
employed for the statistical analysis and the results are presented 
in Table 5 and Table 6. As shown in Table 5, the model had high 
square values of the regression coefficients which indicated high 
association with variances in the predictor values. The 
coefficients of the more significant variables and constants of the 
model are listed in Table 6. 

Table 4. 
Results for the roughness and frequency amplitudes 

Piece 
Cutting
speed 

[m/min]

Feed rate 
[mm/rev]

Cutting
depth
[mm] 

Roughness
Ra

[mm] 
Amplitude

1 120 0.08 0.025 0.18 0.97 
2 120 0.09 0.15 0.2 0.67 
3 120 0.16 0.025 1.09 1.44 
4 120 0.16 0.15 1.04 6.5 
5 210 0.08 0.025 0.8 1.57 
6 210 0.08 0.15 0.78 1.78 
7 210 0.16 0.025 1.01 5.22 
8 210 0.16 0.15 1.1 5.87 
9 89 0.12 0.0875 0.96 27.6 
10 240 0.12 0.0875 0.77 1.7 
11 165 0.05 0.0875 0.14 3.82 
12 165 0.19 0.0875 1.73 17.6 
13 165 0.12 0.0176 0.71 2.47 
14 165 0.12 0.1926 0.76 5.4 
15 165 0.12 0.0875 1.11 1.5 
16 165 0.12 0.0875 0.45 5.85 
17 165 0.12 0.0875 0.46 5.51 
18 165 0.12 0.0875 0.45 10.5 
19 165 0.12 0.0875 0.89 4.94 
20 165 0.12 0.0875 0.47 1.18 

3.2.	� Experimental results and discussion

3.3.	� Factorial modelling

Table 5. 
Factorial analysis with vibration amplitudes 

Test of SS Whole Model vs. SS Residual 
Dependent

variable 
Multiple

R
Multiple

R2
Adjusted

R2 F P 

Ra 0.902000 0.813000 0.764000 16.35000 0.00002 

Table 6. 
Coefficients of the model with vibration amplitudes 

 Raparameter Ra”t” Ra”p” 
V -0.403 -1.726 0.105 
V2 0.00047 3.089 0.0075 
f    
f2 29.213 4.576 0.00037 
ap    
ap2    
amp    
amp2    
v*f    

v*ap    
f*ap    

V*amp -0.00069 -2.781 0.014 
f*amp 0.67591 3.164 0.00642 

ap*amp    

A different model, subtracting the vibration part (amplitude) 
from Table 4, was employed to verify the effectiveness of the 
vibration parameter in the model. Table 7 showed that are 
significant differences between accuracy values with vibration 
amplitudes and without vibration amplitudes. 

Table 7.  
Differences between accuracy values with vibration amplitudes 
and without vibration amplitudes 

Test of SSWhole Model vs. SSRedidual 
Dependent

variable 
Multiple

R
Multiple

R2
Adjusted

R2 F P 

Ra 0.864000 0.746000 0.699000 15.68000 0.00
005

Analysing the results, it is possible to conclude that, when the 
vibration amplitudes were considered in the model the reliability 
was better at minimum 8% for the multiple R² and the adjusted R² 
analysis. 

Then, an empirical model for predict the roughness Ra was 
created, in accordance with Equation 1. 
Ra=-0.403+0.0047*cs+29.21*f²-0.00069*cs*amp 

+0.6759*f*amp     (1) 

4. Conclusions 
Only the amplitudes related to the machine rotation were found; 

the other ones were smaller and related to the error piece form. 
A factorial analysis was performed and it shows that the 

vibration amplitudes provide improvements of at least 8%. 
The surface roughness model shows that the square of feed 

most significantly influences the surface roughness. 
Cutting depth has no significant effect on surface roughness. 
Cutting speed has no significant effect on surface roughness. 
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Table 3. 
Shows the results for all the experiments 

Piece Freq
[Hz] Amp Freq

[Hz] Amp Freq
[Hz] Amp Freq

[Hz] Amp Freq
[Hz] Amp Freq

[Hz] Amp Freq
[Hz] Amp Freq

[Hz] Amp Freq
[Hz] Amp Freq

[Hz] Amp

1   10 0.34         24 0.97       
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3   10 0.17         24 1.44       
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5       17 0.7   21 0.5       42 1.57 
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are multiples of the red values). The values are shown in 
crescent order from left to right. The red values correspond to 
the machine revolution, and are the largest values. The 
amplitudes values were adopted as an influence criterion on the 
dynamic of the process under the piece roughness. The values 
shown on the left side of the table are smaller than the red 
values and are relative to the error form of the piece. Only part 
of the results is shown and that is the most important, the 
continuations with higher values are multiples of the red values. 

Table 4 shows the results for all the experiments. 

3.3. Factorial modelling 

With all the values shown in Table 4, a factorial modelling 
was made. The goal of this analysis was to evaluate the 
dependency of the roughness on all the parameters: cutting speed 
(V), feed rate (f), cutting depth and vibration amplitude (amp). 
The significance level was set to 0.05. Statistica  software was 
employed for the statistical analysis and the results are presented 
in Table 5 and Table 6. As shown in Table 5, the model had high 
square values of the regression coefficients which indicated high 
association with variances in the predictor values. The 
coefficients of the more significant variables and constants of the 
model are listed in Table 6. 

Table 4. 
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Table 5. 
Factorial analysis with vibration amplitudes 

Test of SS Whole Model vs. SS Residual 
Dependent

variable 
Multiple

R
Multiple

R2
Adjusted

R2 F P 

Ra 0.902000 0.813000 0.764000 16.35000 0.00002 

Table 6. 
Coefficients of the model with vibration amplitudes 

 Raparameter Ra”t” Ra”p” 
V -0.403 -1.726 0.105 
V2 0.00047 3.089 0.0075 
f    
f2 29.213 4.576 0.00037 
ap    
ap2    
amp    
amp2    
v*f    

v*ap    
f*ap    

V*amp -0.00069 -2.781 0.014 
f*amp 0.67591 3.164 0.00642 

ap*amp    

A different model, subtracting the vibration part (amplitude) 
from Table 4, was employed to verify the effectiveness of the 
vibration parameter in the model. Table 7 showed that are 
significant differences between accuracy values with vibration 
amplitudes and without vibration amplitudes. 

Table 7.  
Differences between accuracy values with vibration amplitudes 
and without vibration amplitudes 

Test of SSWhole Model vs. SSRedidual 
Dependent

variable 
Multiple

R
Multiple

R2
Adjusted

R2 F P 

Ra 0.864000 0.746000 0.699000 15.68000 0.00
005

Analysing the results, it is possible to conclude that, when the 
vibration amplitudes were considered in the model the reliability 
was better at minimum 8% for the multiple R² and the adjusted R² 
analysis. 

Then, an empirical model for predict the roughness Ra was 
created, in accordance with Equation 1. 
Ra=-0.403+0.0047*cs+29.21*f²-0.00069*cs*amp 

+0.6759*f*amp     (1) 

4. Conclusions 
Only the amplitudes related to the machine rotation were found; 

the other ones were smaller and related to the error piece form. 
A factorial analysis was performed and it shows that the 

vibration amplitudes provide improvements of at least 8%. 
The surface roughness model shows that the square of feed 

most significantly influences the surface roughness. 
Cutting depth has no significant effect on surface roughness. 
Cutting speed has no significant effect on surface roughness. 
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