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ABSTRACT

Purpose: A growing trend to use the copper-based strips is observed recently world-wide in the 
electric and electronic industry . Ultrafine grained copper and solid solution hardened copper alloys are 
applied where high electrical conductivity and good mechanical properties are required.

Design/methodology/approach: This study was aimed to investigate microstructure in strips of 
copper alloys with different stacking fault energy value. The investigated materials have been processed 
by one of the severe plastic deformation method, using different variants of continuous repetitive 
corrugation and straightening (CRCS). Deformation was executed by parallel and perpendicular 
corrugation and straightening of strip sample.

Findings: Continuous repetitive corrugation and straightening is a promising method for refining of 
microstructure of metallic strips.

Practical implications: A growing trend to use copper brass and bronze strips with improved 
functional properties is observed recently world-wide. Within this group of materials particular attention 
is drawn to those with ultra fine or nanometric grain size.

Originality/value: The paper contributes to the microstructure evolution of solid solution hardened 
and age-hardened copper alloys strips produced by original RCS method.
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MATERIALS

 
 

 

1. Introduction 
 
Severe Plastic Deformation (SPD) has been widely used to 

refine the grain structure of metals and alloys. The most popular 
SPD methods include Equal Channel Angular Pressing (ECAP), 
Hydrostatic Extrusion (HE), High-Pressure Torsion (HPT), Cyclic 

Extrusion-Compression (CEC), Multiaxial Forging (MF), 
Accumulative Roll-Bonding (ARB), GP techniques, Max-Strain 
cumulative plastic deformation, Repetitive Corrugation and 
Straightening (RCS) [1-5]. 

Grain refinement produced by SPD method ranges from 1 µm 
to about 100 nm, while subgrains, dislocation cells and crystallites 
present much smaller dimension, below 100 nm. Dislocation 
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model for determination of minimum grain size in severe 
deformations during milling process was presented by Mohamed 
[6]. One of the fundamental assumptions of that model is Fecht's 
phenomenological approach [7] according to which the grain 
refinement consists of three stages: (a) location of dislocations of 
high density in shearing bands; (b) annihilation and recombination 
of dislocations which leads to formation of cells and subgrains 
(recovery), and (c) transformation of subgrain boundaries into high-
angle boundaries. That line of reasoning suggests that the minimum 
grain size dmin in that process results from the balance between 
dislocation structure, as introduced by intensive deformation, and its 
thermal recovery. According to that model the dmin depends on the 
applied stress, value of stacking fault energy and activation energy 
of recovery process. When stress and activation energy are constant 
the dmin value changes with the standard value of stacking fault 
energy according to the formula (1): 
 

 (1) 

 
where: A is dimensionless constant, b is Burgers vector of 
dislocation,  is stacking fault energy, G is rigidity modulus and 
q=0.5 is exponent of standard stacking fault energy. 
 

The stacking fault energy, which determines the width of 
stacking fault band between two Shockley partial dislocations, 
controls the rate of cross slip and climb of dislocation. With the 
decrease of that energy also role of deformation by twinning in 
the general deformation mechanism and, in consequence, in 
mechanism of microstructure refinement should be increasing.  

The Mohamed model is based on the data obtained in 
microstructure refinement processes in high-energy planetary 
mills but it can be also used in analysis of microstructure 
refinement mechanism in other processes. A similar 
microstructure refinement mechanism in copper during 
application of large plastic deformation was observed by Mishra 
et al [8]. The authors also demonstrated large influence of 
adiabatic shearing bands in this process [8,9]. 

Microstructure refinement brings improvement of mechanical 
properties of metals according to the Hall-Petch relation, where 
the yield stress value is a function of the inverse of the square root 
of mean grain diameter. In submicron and nanocrystalline 
materials that dependency collapses. The reduction of yield point 
is explained by the change of deformation mechanism which 
starts to prevail when grain size exceeds a critical value. 

The RCS process provides possibility to produce 
a microstructure refinement effect in microstructure of strips. The 
repetitive corrugation and straightening can also be performed by 
application of pressing between grooved plates or rolling with 
toothed and flat rolls. Because of the continuity of the process its 
main advantage is a possibility for production of significant 
volumes of the material in a strip form and relatively simple 
upscaling from laboratory to pilot and even industrial conditions 
[10-18]. Application of materials of nano- or submicron structure, 
however, requires broadening of the knowledge on their 
functional properties.  

The objective of this study was to determine influence of 
repetitive corrugation and straightening (RCS) on microstructure 

and properties of copper and its alloys (CuZn36, CuSn6) when 
compared to the strips in the initial (annealed) state and also after 
RCS process and next annealed. Those alloys, in comparison to 
copper, present significantly lower stacking fault energy. 
 
 

2. Material and methodology 
 

Samples of strips made of Cu, CuZn36 of dimensions  
140x25x1 mm and CuSn6 of dimensions 140x25x0.8 mm were 
annealed for 1 hour in temperature of 550°C in electric resistance 
furnace. Thus prepared samples were subjected to repetitive 
corrugation and straightening. The complete cycle included: 
bending on toothed rolls, straightening on flat rolls, bending on 
grooved rolls, straightening on flat rolls (four passes in total). The 
sample was turned around by 180° after each cycle. To determine 
the maximum number of cycles N max (critical actual 
deformation) the cycles were repeated until the sample got 
broken. The strips were also deformed in 1/3 and 2/3 of the 
critical number of cycles (Table 1); for copper it was 42 and 21 
cycles, for brass 36 and 18 cycles, while for bronze it was 52 and 
26 cycles, respectively. In thus conducted tests deformation in 
a single cycle was 0.58 [19]. Samples of strips after RCS process 
were annealed for 1 hour in temperature of 550°C. 
 
Table 1.  
Number of full cycles and value of deformation for different 
grades of strips subjected to repetitive corrugation and 
straightening 

 maximum 2/3 1/3 

Cu 63 
36.5 

42 
24.4 

21 
12.2 

CuZn36 59 
34.2 

36 
20.9 

18 
10.4

CuSn6 78 
45.2 

52 
30.2 

26 
15.1 

 
Microstructure of examined materials was investigated with 

metallographic microscopy. Grain size, crystallographic 
orientation of grains in the strips after 1 hour annealing in 
temperature of 550°C, deformed in repetitive corrugation and 
straightening and deformed by RCS process and next annealed 
was determined by scanning microscope equipped with Electron 
Backscatter Diffraction (EBSD) detector.  

TEM investigation were performed using electron 
microscope. 

Hardness was measured by Vickers method. Tension test were 
performed with flat samples in INSTRON testing machine. 
Electrical conductivity was measured by eddy-current Foerster 
Sigmatest. 

The industrial test was carried out on CuSn6 strip (in the cold 
deformed state) 0.64 x184 mm in cross-section. The strip was 
passed through straighten-stretcher with a modified system of 
corrugation and straightening rolls. For this material the 
microstructure, mechanical properties and hardness research have 
been conducted. 

q

Gb
A

b
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3. Results and discussion 

3.1. Laboratory tests 

To determine influence of microstructure refinement degree 
on hardening mechanism in copper and its alloys (CuZn36, 
CuSn6) in RCS process the materials in the initial state (annealed 
for 1 hour in temperature of 550°C), after deformation by RCS 
process and the next annealed for 1 hour in temperature of 550°C 
were examined. Microstructure of copper after recrystallization 
annealing shows visible annealing twins, resulting from the 
middle stacking fault energy of that metal (Fig. 1). CuZn36 alloys 
are characterized by single-phase structure of the basic solution , 
of polyhedral grains with numerous annealing twins (Fig. 4), 
while microstructure of CuSn6 strips with visible crystals of alpha 
phase with twins is shown in Fig. 7.  

After repetitive corrugation and straightening the analyzed 
structures of CuSn6 strip deformation show clearly marked slip 
systems (Fig. 8). They are limited to the area of grain interior and 
only occasionally show tendency for going beyond grain 
boundaries. Also shearing bands become visible along the 
directions of maximal non-dilational (shearing) strains. 

Microstructure of Cu, CuZn36, CuSn6 strips after RCS 
process and the next annealing is similar to microstructure in the 
initial state (Figs. 3, 6, 9). 

Test results using the EBSD detector (backscattered electron 
diffraction) are shown in Figs. 1-9 c. Based on data obtained 
using EBSD detector was obtained including crystallographic 
information on material. The use of EBSD technique was to 
investigate the effect of the cyclical process of corrugation and 
straightening of the fraction of development of grain boundaries, 
both narrow-and wide-angle, and thus the level of fragmentation 
of the structure. The strips of copper and its alloys after cyclic 
corrugation and straightening prevail grain boundaries narrow 
angle involving a range of 2-15° (72-78%), while in the initial 
material in a wide angle range 15-180°. For the material deformed 
by the RCS process, and then annealed at 550°C/1h fraction of 
development of narrow angle for Cu is 42.8%, whereas for copper 
alloys CuZn36 and CuSn6 - 4.8% and 8.2%, respectively. 

Texture samples of Cu, CuZn36 and CuSn6 strips (Fig. 10) in 
the initial state is similar and can be described as very weak 
texture mill, which dominate grain orientation near {112} <111> 
and {110} <112>. Jagged shape of the baseline in these figures 
indicates a coarsely crystalline nature of the material. Texture 
samples after repetitive corrugation and straightening is very 
similar in all the samples, regardless of the composition of the 
alloy. It differs significantly from the samples while after cold 
rolling. All samples after repetitive corrugation and straightening 
have texture in which the dominant component of the featured 
plane {110}. The system in pole Fig. maximum (four maximum 
near the middle of the projection, rotated relative to the rolling 
direction of about 45 °) indicates that the texture is a double 
{110} <112>   {110} <-111>, which partially overlap maxima at 
each other - or, texture {110} <-223> fuzzy by rotation around the 
axis <110>. This can be seen especially broadening on the pole 
Figure of the sample strip CuSn6. Texture of the other samples 

after repetitive corrugation and straightening exhibits significant 
asymmetry, which may be due to corrugation conditions, but may 
also be the result of the analysis of a limited number of 
crystallites. Texture analysis results show that during the process 
there is still a strong corrugation of the plastic deformation of the 
metal, resulting in the rotation of the crystal lattice of the grains as 
described above the position and thereby affecting the change of 
anisotropy of the properties of metal repetitive corrugation and 
straightening. 

The average Cu grain size after RCS process is 9 µm, CuZn36 
- 8 µm, while in CuSn6 it was 7 µm. These values confirm that 
the average grain size decreases with reduction of stacking fault 
energy (SFE CuZn 35 mJ/m2 [10] is significantly lower than Cu 
78 mJ/m2, SFE CuSn - about 20 mJ/m2 [20]). Lower SFE of the 
alloy facilitates grain refinement and the measured grain size is 
smaller, however the grain size reached by EBSD and TEM 
methods are different. To obtain unambiguous explanation of the 
mechanism of microstructure refinement and strain mechanism in 
ultra-fine and nanocrystalline materials it is necessary to precisely 
determine the size of grains/subgrains. Recently widely applied 
EBSD technique does not provide satisfactory results. The grain 
size measurements are disrupted by presence of texture, ultra-fine 
and nanocrystalline grains/subgrains, and also by resolving 
powers of determination of the lower limit of misorientation 
angle, therefore the measurements should be supplemented with 
laborious TEM measurements. 

The grain/subgrain size in strips made of Cu and its alloys 
after RCS process is in the range 50-300 nm (Figs. 2d, 4d, 6d). 
Also areas with shearing bands can be observed. In majority of 
grains/subgrains presence of large dislocation density was 
established. 

Beside typical grain structure, produced in the result of 
crossing of numerous deformation bands, the refined material 
presents structure composed of dislocation cells and subgrains. 

Both tensile strength and 0.2 yield strength of Cu, CuZn36 
and CuSn6 strips after deformation by repetitive corrugation and 
straightening increase when compared to strips after annealing, 
while after deformation by RCS process and the next annealing 
are comparable to the values obtained for the material in the 
initial state. (Figs. 11, 12). 

Elongation A50 of strip samples after deformation by 
repetitive corrugation and straightening significantly drops when 
compared to the samples in the initial state, from 43% to about 
4,5% for copper, from 48% to about 6.5% for strip sample of 
CuZn36 and from 41% to about 7% for CuSn6 (Fig. 13).  

Hardness of strip samples after repetitive corrugation and 
straightening increases over two times when compared to the 
samples after annealing (Fig. 14). In the samples subjected to 
RCS process increase of hardness with increase of the number of 
cycles is registered, however in the samples after maximum 
number of cycles slight decrease of hardness was observed in 
comparison to the samples subjected to 2/3 of the critical number 
of cycles, which can show presence of some critical value of 
deformation above which hardness increase is not observed, 
probably due to processes of dynamic recovery which decreases 
density of dislocations in the material. Hardness of strip samples 
after RCS process and the next annealing decrease to value of 
samples in the initial state. 

2.	�Material and methodology
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model for determination of minimum grain size in severe 
deformations during milling process was presented by Mohamed 
[6]. One of the fundamental assumptions of that model is Fecht's 
phenomenological approach [7] according to which the grain 
refinement consists of three stages: (a) location of dislocations of 
high density in shearing bands; (b) annihilation and recombination 
of dislocations which leads to formation of cells and subgrains 
(recovery), and (c) transformation of subgrain boundaries into high-
angle boundaries. That line of reasoning suggests that the minimum 
grain size dmin in that process results from the balance between 
dislocation structure, as introduced by intensive deformation, and its 
thermal recovery. According to that model the dmin depends on the 
applied stress, value of stacking fault energy and activation energy 
of recovery process. When stress and activation energy are constant 
the dmin value changes with the standard value of stacking fault 
energy according to the formula (1): 
 

 (1) 

 
where: A is dimensionless constant, b is Burgers vector of 
dislocation,  is stacking fault energy, G is rigidity modulus and 
q=0.5 is exponent of standard stacking fault energy. 
 

The stacking fault energy, which determines the width of 
stacking fault band between two Shockley partial dislocations, 
controls the rate of cross slip and climb of dislocation. With the 
decrease of that energy also role of deformation by twinning in 
the general deformation mechanism and, in consequence, in 
mechanism of microstructure refinement should be increasing.  

The Mohamed model is based on the data obtained in 
microstructure refinement processes in high-energy planetary 
mills but it can be also used in analysis of microstructure 
refinement mechanism in other processes. A similar 
microstructure refinement mechanism in copper during 
application of large plastic deformation was observed by Mishra 
et al [8]. The authors also demonstrated large influence of 
adiabatic shearing bands in this process [8,9]. 

Microstructure refinement brings improvement of mechanical 
properties of metals according to the Hall-Petch relation, where 
the yield stress value is a function of the inverse of the square root 
of mean grain diameter. In submicron and nanocrystalline 
materials that dependency collapses. The reduction of yield point 
is explained by the change of deformation mechanism which 
starts to prevail when grain size exceeds a critical value. 

The RCS process provides possibility to produce 
a microstructure refinement effect in microstructure of strips. The 
repetitive corrugation and straightening can also be performed by 
application of pressing between grooved plates or rolling with 
toothed and flat rolls. Because of the continuity of the process its 
main advantage is a possibility for production of significant 
volumes of the material in a strip form and relatively simple 
upscaling from laboratory to pilot and even industrial conditions 
[10-18]. Application of materials of nano- or submicron structure, 
however, requires broadening of the knowledge on their 
functional properties.  

The objective of this study was to determine influence of 
repetitive corrugation and straightening (RCS) on microstructure 

and properties of copper and its alloys (CuZn36, CuSn6) when 
compared to the strips in the initial (annealed) state and also after 
RCS process and next annealed. Those alloys, in comparison to 
copper, present significantly lower stacking fault energy. 
 
 

2. Material and methodology 
 

Samples of strips made of Cu, CuZn36 of dimensions  
140x25x1 mm and CuSn6 of dimensions 140x25x0.8 mm were 
annealed for 1 hour in temperature of 550°C in electric resistance 
furnace. Thus prepared samples were subjected to repetitive 
corrugation and straightening. The complete cycle included: 
bending on toothed rolls, straightening on flat rolls, bending on 
grooved rolls, straightening on flat rolls (four passes in total). The 
sample was turned around by 180° after each cycle. To determine 
the maximum number of cycles N max (critical actual 
deformation) the cycles were repeated until the sample got 
broken. The strips were also deformed in 1/3 and 2/3 of the 
critical number of cycles (Table 1); for copper it was 42 and 21 
cycles, for brass 36 and 18 cycles, while for bronze it was 52 and 
26 cycles, respectively. In thus conducted tests deformation in 
a single cycle was 0.58 [19]. Samples of strips after RCS process 
were annealed for 1 hour in temperature of 550°C. 
 
Table 1.  
Number of full cycles and value of deformation for different 
grades of strips subjected to repetitive corrugation and 
straightening 

 maximum 2/3 1/3 

Cu 63 
36.5 

42 
24.4 

21 
12.2 

CuZn36 59 
34.2 

36 
20.9 

18 
10.4

CuSn6 78 
45.2 

52 
30.2 

26 
15.1 

 
Microstructure of examined materials was investigated with 

metallographic microscopy. Grain size, crystallographic 
orientation of grains in the strips after 1 hour annealing in 
temperature of 550°C, deformed in repetitive corrugation and 
straightening and deformed by RCS process and next annealed 
was determined by scanning microscope equipped with Electron 
Backscatter Diffraction (EBSD) detector.  

TEM investigation were performed using electron 
microscope. 

Hardness was measured by Vickers method. Tension test were 
performed with flat samples in INSTRON testing machine. 
Electrical conductivity was measured by eddy-current Foerster 
Sigmatest. 

The industrial test was carried out on CuSn6 strip (in the cold 
deformed state) 0.64 x184 mm in cross-section. The strip was 
passed through straighten-stretcher with a modified system of 
corrugation and straightening rolls. For this material the 
microstructure, mechanical properties and hardness research have 
been conducted. 
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3. Results and discussion 

3.1. Laboratory tests 

To determine influence of microstructure refinement degree 
on hardening mechanism in copper and its alloys (CuZn36, 
CuSn6) in RCS process the materials in the initial state (annealed 
for 1 hour in temperature of 550°C), after deformation by RCS 
process and the next annealed for 1 hour in temperature of 550°C 
were examined. Microstructure of copper after recrystallization 
annealing shows visible annealing twins, resulting from the 
middle stacking fault energy of that metal (Fig. 1). CuZn36 alloys 
are characterized by single-phase structure of the basic solution , 
of polyhedral grains with numerous annealing twins (Fig. 4), 
while microstructure of CuSn6 strips with visible crystals of alpha 
phase with twins is shown in Fig. 7.  

After repetitive corrugation and straightening the analyzed 
structures of CuSn6 strip deformation show clearly marked slip 
systems (Fig. 8). They are limited to the area of grain interior and 
only occasionally show tendency for going beyond grain 
boundaries. Also shearing bands become visible along the 
directions of maximal non-dilational (shearing) strains. 

Microstructure of Cu, CuZn36, CuSn6 strips after RCS 
process and the next annealing is similar to microstructure in the 
initial state (Figs. 3, 6, 9). 

Test results using the EBSD detector (backscattered electron 
diffraction) are shown in Figs. 1-9 c. Based on data obtained 
using EBSD detector was obtained including crystallographic 
information on material. The use of EBSD technique was to 
investigate the effect of the cyclical process of corrugation and 
straightening of the fraction of development of grain boundaries, 
both narrow-and wide-angle, and thus the level of fragmentation 
of the structure. The strips of copper and its alloys after cyclic 
corrugation and straightening prevail grain boundaries narrow 
angle involving a range of 2-15° (72-78%), while in the initial 
material in a wide angle range 15-180°. For the material deformed 
by the RCS process, and then annealed at 550°C/1h fraction of 
development of narrow angle for Cu is 42.8%, whereas for copper 
alloys CuZn36 and CuSn6 - 4.8% and 8.2%, respectively. 

Texture samples of Cu, CuZn36 and CuSn6 strips (Fig. 10) in 
the initial state is similar and can be described as very weak 
texture mill, which dominate grain orientation near {112} <111> 
and {110} <112>. Jagged shape of the baseline in these figures 
indicates a coarsely crystalline nature of the material. Texture 
samples after repetitive corrugation and straightening is very 
similar in all the samples, regardless of the composition of the 
alloy. It differs significantly from the samples while after cold 
rolling. All samples after repetitive corrugation and straightening 
have texture in which the dominant component of the featured 
plane {110}. The system in pole Fig. maximum (four maximum 
near the middle of the projection, rotated relative to the rolling 
direction of about 45 °) indicates that the texture is a double 
{110} <112>   {110} <-111>, which partially overlap maxima at 
each other - or, texture {110} <-223> fuzzy by rotation around the 
axis <110>. This can be seen especially broadening on the pole 
Figure of the sample strip CuSn6. Texture of the other samples 

after repetitive corrugation and straightening exhibits significant 
asymmetry, which may be due to corrugation conditions, but may 
also be the result of the analysis of a limited number of 
crystallites. Texture analysis results show that during the process 
there is still a strong corrugation of the plastic deformation of the 
metal, resulting in the rotation of the crystal lattice of the grains as 
described above the position and thereby affecting the change of 
anisotropy of the properties of metal repetitive corrugation and 
straightening. 

The average Cu grain size after RCS process is 9 µm, CuZn36 
- 8 µm, while in CuSn6 it was 7 µm. These values confirm that 
the average grain size decreases with reduction of stacking fault 
energy (SFE CuZn 35 mJ/m2 [10] is significantly lower than Cu 
78 mJ/m2, SFE CuSn - about 20 mJ/m2 [20]). Lower SFE of the 
alloy facilitates grain refinement and the measured grain size is 
smaller, however the grain size reached by EBSD and TEM 
methods are different. To obtain unambiguous explanation of the 
mechanism of microstructure refinement and strain mechanism in 
ultra-fine and nanocrystalline materials it is necessary to precisely 
determine the size of grains/subgrains. Recently widely applied 
EBSD technique does not provide satisfactory results. The grain 
size measurements are disrupted by presence of texture, ultra-fine 
and nanocrystalline grains/subgrains, and also by resolving 
powers of determination of the lower limit of misorientation 
angle, therefore the measurements should be supplemented with 
laborious TEM measurements. 

The grain/subgrain size in strips made of Cu and its alloys 
after RCS process is in the range 50-300 nm (Figs. 2d, 4d, 6d). 
Also areas with shearing bands can be observed. In majority of 
grains/subgrains presence of large dislocation density was 
established. 

Beside typical grain structure, produced in the result of 
crossing of numerous deformation bands, the refined material 
presents structure composed of dislocation cells and subgrains. 

Both tensile strength and 0.2 yield strength of Cu, CuZn36 
and CuSn6 strips after deformation by repetitive corrugation and 
straightening increase when compared to strips after annealing, 
while after deformation by RCS process and the next annealing 
are comparable to the values obtained for the material in the 
initial state. (Figs. 11, 12). 

Elongation A50 of strip samples after deformation by 
repetitive corrugation and straightening significantly drops when 
compared to the samples in the initial state, from 43% to about 
4,5% for copper, from 48% to about 6.5% for strip sample of 
CuZn36 and from 41% to about 7% for CuSn6 (Fig. 13).  

Hardness of strip samples after repetitive corrugation and 
straightening increases over two times when compared to the 
samples after annealing (Fig. 14). In the samples subjected to 
RCS process increase of hardness with increase of the number of 
cycles is registered, however in the samples after maximum 
number of cycles slight decrease of hardness was observed in 
comparison to the samples subjected to 2/3 of the critical number 
of cycles, which can show presence of some critical value of 
deformation above which hardness increase is not observed, 
probably due to processes of dynamic recovery which decreases 
density of dislocations in the material. Hardness of strip samples 
after RCS process and the next annealing decrease to value of 
samples in the initial state. 

3.	�Results and discussion

3.1.	�Laboratory tests
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