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ABSTRACT

Purpose: The paper presents method in predicting hardness of steel cooled continuously from the 
austenitizing temperature, basing on the chemical composition, austenitizing temperature and cooling rate.

Design/methodology/approach: In the paper it has ©been applied a hybrid approach that combined 
application of various mathematical tools including logistic regression and multiple regression to solve 
selected tasks from the area of materials science.

Findings: Modelling make improvement of engineering materials properties possible, as well as 
prediction of their properties, even before the materials are fabricated, with the significant reduction of 
expenditures and time necessary for their investigation and application.

Practical implications: The worked out relationships may be used in computer systems of steels’ 
designing for the heat-treated machine parts.

Originality/value: The paper presents the method for calculating hardness of the structural steels, 
depending on their chemical composition, austenitizing temperature and cooling rate.

Keywords: Computational material science; Steels; Statistic methods; CCT diagrams
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METHODOLOGY OF RESEARCH, ANALYSIS AND MODELLING

 
 

 

1. Introduction 
 
Computer-aided modeling is becoming increasingly present in 

research and in industrial practice. Computer modelling make 
improvement of engineering materials properties possible, as well 
as prediction of their properties, even before the materials are 
fabricated, with the significant reduction of expenditures and time 
necessary for their investigation and application. Research in the 
area of mathematical modelling, computational intelligence, and 
artificial intelligence indicate to the big potential connected with 
using this methods [1-7]. 

The knowledge of kinetics of supercooled austenite 
transformations occurring during steel cooling continuously from 

the austenitisation temperature, as shown in CCT diagrams, is 
underlying the selection of parameters of many steel heat 
treatment operations. CCT diagrams are applied for determining 
the structure and hardness of hardened, normalised steel or steel 
subjected to full annealing. The position and shape of curves of 
supercooled austenite transformations applied onto CCT diagrams 
depend most of all on the chemical composition of steel, austenite 
homogenisation degree, austenite grain size. Fluctuations of the 
chemical composition of steel, allowable even within the same 
steel grade, and also changes of the austenitizing conditions cause 
that published in catalogues CCT diagrams cannot provide 
reliable information on austenite transformations during cooling. 
The dilatometric method supplemented with metallographic 
investigations with different velocities of samples and their 
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hardness measurements are usually used for establishing a CCT 
diagrams. The investigations are time consuming and require 
costly research apparatuses [8-9]. 

The paper presents the methodology of modelling using the 
regression method of the relationship between the chemical 
composition and the hardness of the steel cooling from the 
austenitizing temperature. 

 

 

2. Examples of the hardness calculating 
methods
 

The method proposed in the paper [10] employs two 
applications of the neural networks: classification and regression.  
To develop the relationship between the chemical composition, 
austenitising temperature, cooling rate, and hardness of the 
structural steel the feedforward neural network (MLP) was used. 
The activation level of the successive fourteen network input 
nodes depended on: mass concentration of elements (C, Mn, Si, 
Cr, Ni, Mo, V, Cu), austenitizing temperature, cooling rate, and 
structure type. The type of structure developed after cooling the 
steel at a particular rate was specified using four binary nominal 
variables, whose values were determined basing on the model 
presented in [11-13]. The values of the network quality evaluation 
coefficients for the training, validation and test set, were: for the 
average absolute error 37HV, a quotient of standard deviations 
0.32, a correlation coefficient 0.95. 

Research workers at the Creusot Laboratory have been 
studying the effect of chemical composition and austenitisation 
conditions on the continuous cooling transformation diagrams for 
carbon and low alloy steels [14-17]. They have derived the 
following Equations:  

 
logvM=9.81-
(4.62·C+1.05·Mn+0.5·Cr+0.66·Mo+0.54·Ni+0.00183·PA) (1) 
logvM90=8.76-
(4.04·C+0.96·Mn+0.58·Cr+0.97·Mo+0.49·Ni+0.001·PA) (2) 
logvM50=8.50-
(4.13·C+0.86·Mn+0.41·Cr+0.94·Mo+0.57·Ni+0.0012·PA) (3) 
logvB=10.17-
(3.8·C+1.07·Mn+0.57·Cr+1.58·Mo+0.7·Ni+0.0032·PA) (4) 
logvB90=10.55-
(3.65·C+1.08·Mn+0.61·Cr+1.49·Mo+0.77·Ni+0.0032·PA) (5) 
logvB50=8.74-
(2.23·C+0.86·Mn+0.59·Cr+1.60·Mo+0.56·Ni+0.0032·PA) (6) 
logvFP=6.36-(0.43C+0.49·Mn 
+0.26·Cr+0.38·Mo+2·Mo0.5+0.78·Ni+0.0019·PA) (7) 
logvFP90=7.51-
(1.38·C+0.35·Mn+0.11·Cr+2.31·Mo+0.93·Ni+0.0033·PA) (8) 
 

where: 
C, Mn, Cr, Ni, Mo, - mass concentration of the alloying elements; 
vi [oC/h] - critical cooling rates at 700oC are referred to as: 
vM-for martensite; vM90- denotes 90% of martensite with 10% of 
other constituents; vM50- denotes 50% of martensite with 50% of 
other constituents; vB-for bainite; vB90- denotes 90% of bainite 
with 10% of other constituents; vB50- denotes 50% of bainite with 
50% of other constituents; vFP-for ferrite-pearlite; vFP90-denotes 
90% of ferrite-pearlite with 10% of bainite; 
PA is an austenitising parameter whose value in oC/h is given by: 

1
log1

ot
t

H
nR

TAP  (9) 

where: 
T-temperature, K, 
t - time, 
to - unit of time, 
R - gas constant 8.314 J/K·mol, 
n - loge10, 

H - the activation energy of the phenomenon which for grain 
growth in most low alloy steels has a value of 460.55 kJ/mol. 
 

The hardness of the microstructures produced are given by the 
Equations (10-12). 
 
HVM=127+949·C+27·Si+11·Mn+16·Cr+8·Ni+21·logvR (10) 
 
HVB=-323+185·C+330·Si+153·Mn+144·Cr+191·Mo+65·Ni 
+(logvR)·(89+53·C-55·Si-22·Mn-20·Cr-33·Mo-10·Ni) (11) 
 
HVF-

P=42+223·C+53·Si+30·Mn+7·Cr+19·Mo+12.6·Ni+(logvR)·(10-
19·Si+8·Cr+4·Ni+130·V) (12) 
 
where: vR is the cooling rate. 

 
Maynier and coworkers  have developed a useful method to 

predict steel hardness. Their equations were derived from 107 
tests on 40 industrial grades. The total hardness of steel is 
calculate dependent on the volume fractions of the constituents of 
the microstructure. 
 
HV=(%FP·HVF-P+%B·HVB+%M·HVM)/100 (13) 
 

A disadvantage of the Creusot-Loire method is that 
knowledge is required of the amount of the starting constituents of 
the microstructure. This can be estimated by the Equations (1-8).  
 
 

3. Materials and method 
 

The preparation of a representative set of empirical data has 
had a fundamental significance for preparing a method of 
hardness calculating. The data set, made on the basis of available 
publications, included the chemical composition, austenitizing 
temperature and CCT diagrams for structural and engineering 
steels. The obtained diagrams have been subjected to a selection, 
taking the mass concentration of alloy elements as a criterion. A 
range of the accepted mass concentrations of the elements has 
been presented in Table 1. The data set consisted of 1200 cases. 

On the basis of the analysis of different forms, general 
formulae embracing the influence of the chemical composition 
and optionally, the austenitizing temperature as well as the 
cooling rate on the hardness, including the interrelations 
accounted for synergy of alloy elements’ interactions, the general 
forms of Equations have been accepted: 
HV=a0+a1·C+a2·Mn+a3·Cr+a4·Ni+a5·Mo+a6·V+a7·TA+a8·vR+a9·F+
a10·P+a11·B+a12·M (14) 
where: 
C, Mn, Cr, Ni, Mo, V - mass fractions of the alloying elements; 

 

a0, a1.., a12 - coefficients calculated with the regression analysis; 
TA - austenitizing temperature, °C; 
VR - cooling rate, °C/min; 
F, P, B, M - binary nominal variables, whose values (0 or 1) were 
determined basing on the logistic regression model. 
 
Table 1. 
Ranges of mass concentrations of elements  

R
an

ge
 

Mass fractions of elements, % 

C Mn Cr Ni Mo V 

min 0.22 0.40 0 0 0 0 

max 0.55 1.15 2.10 2.15 0.55 0.25 

average 0.37 0.71 0.78 0.52 0.17 0.02 

standard 
deviation 0.09 0.14 0.49 0.67 0.16 0.05 

 
The type of structure developed after cooling the steel was 

specified using four binary nominal variables, whose values were 
determined basing on the logistic regression model. A classifier 
had to be developed, to obtain this information, using as input 
data the mass concentrations of the alloying elements, 
austenitizing temperature, and cooling rate. 
 
PX=exp(KX)/{1+exp(KX)} (15) 
 
where: 
X=F, P, B, M, 
KX= b0X+b1X·C+b2X·Mn+b3X·Cr+b4X·Ni+b5X·Mo+b6X·V+b7X·vR  (16) 
 
 

4. Calculation results 
 

Evaluation of the worked out empirical formulae has been 
made on the basis of the analysis of the mean error value,the 
deviation of the average absolute error and Pearsons’ correlation 
coefficient. The formulae describing the influence of the chemical 
composition and cooling rate on the hardness worked out using 
the multiple regression, are presented in Equation 17. Classifiers 
used for forecasting occurrences of the particular structural 
constituents in steel are presented in Equations 18-25.  

 
HV=-86+492·C+92·Mn+69·Cr+25·Ni+102·Mo+267·V 
+0.064·TA+27.7·vR

0.25-38·F-70·P-32·B+72·M (17) 
 
where: 
F=1 for PF 0.5 or F=0 for PF<0.5  
P=1 for PP 0.5 or P=0 for PP<0.5 
B=1 for PB 0.5 or P=0 for PB<0.5 
M=1 for PM 0.5 or P=0 for PM<0.5 
 
PF=exp(KF)/{1+exp(KF)} (18) 
KF=17-20.9·C-0.01·Mn-2.3·Cr-1.2·Ni-7.4·Mo-6.5·V-1.5·vR

0.25 (19) 
PP=exp(KP)/{1+exp(KP)} (20) 
KP=16-3.5·C-4·Mn-3.5·Cr-1.5·Ni-11.8·Mo-1.7·V-1.9·vR

0.25 (21) 
PB=exp(KB)/{1+exp(KB)} (22) 
KB=0.0015-2.54·C-0.74·Mn-0.3·Cr-0.2·Ni-2.3·Mo-1.85·V-
0.018·vR

0.25 (23) 

PM=exp(KM)/{1+exp(KM)} (24) 
KM=-10.9-1.7·C-2.9·Mn-3.7·Cr-0.9·Ni-3.7·Mo-2.5·V-1·vR

0.25 (25) 
 
The assessment of the significance of the regression 

coefficients are presented in Table 2. Significance level was 
specified of 0.05. The input variable is statistically significant if 
the p-value is less than 0.05. The mean error values, the standard 
deviation of the error and the correlation coefficient for the 
hardness model are given in Table 3. In Table 4 the quality 
assessment coefficients of the classifier are presented, used as 
classifiers yielding information on the successive transformations 
occurring along the analysed cooling curves.  

 
Table 2. 
The assessment of significance of regression coefficients 

 Coefficients Standard 
Error t Stat P-value 

Intercept -86.3305 35.70162 -2.41811 0.015753 
C 491.6927 24.263 20.26512 1.68E-78 

Mn 92.34665 14.82571 6.228819 6.54E-10 
Cr 69.01353 4.360176 15.82815 2.81E-51 
Ni 24.92482 3.172811 7.855754 8.95E-15 
Mo 101.742 13.58629 7.488582 1.37E-13 
V 267.2312 40.81646 6.547145 8.76E-11 
TA 0.063932 0.03227 1.981182 0.047805 

VR
0.25 21.70305 0.950688 22.82877 1.06E-95 

F -37.6321 5.582585 -6.74098 2.46E-11 
P -70.5438 6.369514 -11.0752 3.52E-27 
B -31.6706 4.233635 -7.48071 1.45E-13 
M 72.08688 5.671254 12.71092 9.11E-35 

 
Table 3. 
Error values and correlation coefficients for hardness model  

Error EHV, 
HV 

Standard 
deviation of 

the error, HV 

Quotient of 
standard 

deviations 

Pearson 
correlation 
coefficient 

46.9 35.6 0.23 0.92 

 
Table 4. 
Quality assessment coefficients for models, used as classifiers for 
determining the types of occurring transformations 

Transformation areas Coefficient of correct 
classifications, % 

Ferritic 88 
Pearlitic 88 
Bainitic 63 

Martensitic 83 
 
To verify the model worked out, the experimental hardness 

change curves were made as functions of cooling time were 
compared with curves calculated using hardness model. Examples 
of the curves worked out are shown in Figures 1-6. The 
comparative plots for the experimental and calculated hardness 
are presented in Figure 7. The distribution of the residuals 
calculated for pearlitic and martensitic transformation are 
presented in Figures 8-9. 

2.  Examples of the hardness calculating 
methods

3. Materials and method
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hardness measurements are usually used for establishing a CCT 
diagrams. The investigations are time consuming and require 
costly research apparatuses [8-9]. 

The paper presents the methodology of modelling using the 
regression method of the relationship between the chemical 
composition and the hardness of the steel cooling from the 
austenitizing temperature. 

 

 

2. Examples of the hardness calculating 
methods
 

The method proposed in the paper [10] employs two 
applications of the neural networks: classification and regression.  
To develop the relationship between the chemical composition, 
austenitising temperature, cooling rate, and hardness of the 
structural steel the feedforward neural network (MLP) was used. 
The activation level of the successive fourteen network input 
nodes depended on: mass concentration of elements (C, Mn, Si, 
Cr, Ni, Mo, V, Cu), austenitizing temperature, cooling rate, and 
structure type. The type of structure developed after cooling the 
steel at a particular rate was specified using four binary nominal 
variables, whose values were determined basing on the model 
presented in [11-13]. The values of the network quality evaluation 
coefficients for the training, validation and test set, were: for the 
average absolute error 37HV, a quotient of standard deviations 
0.32, a correlation coefficient 0.95. 

Research workers at the Creusot Laboratory have been 
studying the effect of chemical composition and austenitisation 
conditions on the continuous cooling transformation diagrams for 
carbon and low alloy steels [14-17]. They have derived the 
following Equations:  

 
logvM=9.81-
(4.62·C+1.05·Mn+0.5·Cr+0.66·Mo+0.54·Ni+0.00183·PA) (1) 
logvM90=8.76-
(4.04·C+0.96·Mn+0.58·Cr+0.97·Mo+0.49·Ni+0.001·PA) (2) 
logvM50=8.50-
(4.13·C+0.86·Mn+0.41·Cr+0.94·Mo+0.57·Ni+0.0012·PA) (3) 
logvB=10.17-
(3.8·C+1.07·Mn+0.57·Cr+1.58·Mo+0.7·Ni+0.0032·PA) (4) 
logvB90=10.55-
(3.65·C+1.08·Mn+0.61·Cr+1.49·Mo+0.77·Ni+0.0032·PA) (5) 
logvB50=8.74-
(2.23·C+0.86·Mn+0.59·Cr+1.60·Mo+0.56·Ni+0.0032·PA) (6) 
logvFP=6.36-(0.43C+0.49·Mn 
+0.26·Cr+0.38·Mo+2·Mo0.5+0.78·Ni+0.0019·PA) (7) 
logvFP90=7.51-
(1.38·C+0.35·Mn+0.11·Cr+2.31·Mo+0.93·Ni+0.0033·PA) (8) 
 

where: 
C, Mn, Cr, Ni, Mo, - mass concentration of the alloying elements; 
vi [oC/h] - critical cooling rates at 700oC are referred to as: 
vM-for martensite; vM90- denotes 90% of martensite with 10% of 
other constituents; vM50- denotes 50% of martensite with 50% of 
other constituents; vB-for bainite; vB90- denotes 90% of bainite 
with 10% of other constituents; vB50- denotes 50% of bainite with 
50% of other constituents; vFP-for ferrite-pearlite; vFP90-denotes 
90% of ferrite-pearlite with 10% of bainite; 
PA is an austenitising parameter whose value in oC/h is given by: 

1
log1

ot
t

H
nR

TAP  (9) 

where: 
T-temperature, K, 
t - time, 
to - unit of time, 
R - gas constant 8.314 J/K·mol, 
n - loge10, 

H - the activation energy of the phenomenon which for grain 
growth in most low alloy steels has a value of 460.55 kJ/mol. 
 

The hardness of the microstructures produced are given by the 
Equations (10-12). 
 
HVM=127+949·C+27·Si+11·Mn+16·Cr+8·Ni+21·logvR (10) 
 
HVB=-323+185·C+330·Si+153·Mn+144·Cr+191·Mo+65·Ni 
+(logvR)·(89+53·C-55·Si-22·Mn-20·Cr-33·Mo-10·Ni) (11) 
 
HVF-

P=42+223·C+53·Si+30·Mn+7·Cr+19·Mo+12.6·Ni+(logvR)·(10-
19·Si+8·Cr+4·Ni+130·V) (12) 
 
where: vR is the cooling rate. 

 
Maynier and coworkers  have developed a useful method to 

predict steel hardness. Their equations were derived from 107 
tests on 40 industrial grades. The total hardness of steel is 
calculate dependent on the volume fractions of the constituents of 
the microstructure. 
 
HV=(%FP·HVF-P+%B·HVB+%M·HVM)/100 (13) 
 

A disadvantage of the Creusot-Loire method is that 
knowledge is required of the amount of the starting constituents of 
the microstructure. This can be estimated by the Equations (1-8).  
 
 

3. Materials and method 
 

The preparation of a representative set of empirical data has 
had a fundamental significance for preparing a method of 
hardness calculating. The data set, made on the basis of available 
publications, included the chemical composition, austenitizing 
temperature and CCT diagrams for structural and engineering 
steels. The obtained diagrams have been subjected to a selection, 
taking the mass concentration of alloy elements as a criterion. A 
range of the accepted mass concentrations of the elements has 
been presented in Table 1. The data set consisted of 1200 cases. 

On the basis of the analysis of different forms, general 
formulae embracing the influence of the chemical composition 
and optionally, the austenitizing temperature as well as the 
cooling rate on the hardness, including the interrelations 
accounted for synergy of alloy elements’ interactions, the general 
forms of Equations have been accepted: 
HV=a0+a1·C+a2·Mn+a3·Cr+a4·Ni+a5·Mo+a6·V+a7·TA+a8·vR+a9·F+
a10·P+a11·B+a12·M (14) 
where: 
C, Mn, Cr, Ni, Mo, V - mass fractions of the alloying elements; 

 

a0, a1.., a12 - coefficients calculated with the regression analysis; 
TA - austenitizing temperature, °C; 
VR - cooling rate, °C/min; 
F, P, B, M - binary nominal variables, whose values (0 or 1) were 
determined basing on the logistic regression model. 
 
Table 1. 
Ranges of mass concentrations of elements  

R
an

ge
 

Mass fractions of elements, % 

C Mn Cr Ni Mo V 

min 0.22 0.40 0 0 0 0 

max 0.55 1.15 2.10 2.15 0.55 0.25 

average 0.37 0.71 0.78 0.52 0.17 0.02 

standard 
deviation 0.09 0.14 0.49 0.67 0.16 0.05 

 
The type of structure developed after cooling the steel was 

specified using four binary nominal variables, whose values were 
determined basing on the logistic regression model. A classifier 
had to be developed, to obtain this information, using as input 
data the mass concentrations of the alloying elements, 
austenitizing temperature, and cooling rate. 
 
PX=exp(KX)/{1+exp(KX)} (15) 
 
where: 
X=F, P, B, M, 
KX= b0X+b1X·C+b2X·Mn+b3X·Cr+b4X·Ni+b5X·Mo+b6X·V+b7X·vR  (16) 
 
 

4. Calculation results 
 

Evaluation of the worked out empirical formulae has been 
made on the basis of the analysis of the mean error value,the 
deviation of the average absolute error and Pearsons’ correlation 
coefficient. The formulae describing the influence of the chemical 
composition and cooling rate on the hardness worked out using 
the multiple regression, are presented in Equation 17. Classifiers 
used for forecasting occurrences of the particular structural 
constituents in steel are presented in Equations 18-25.  

 
HV=-86+492·C+92·Mn+69·Cr+25·Ni+102·Mo+267·V 
+0.064·TA+27.7·vR

0.25-38·F-70·P-32·B+72·M (17) 
 
where: 
F=1 for PF 0.5 or F=0 for PF<0.5  
P=1 for PP 0.5 or P=0 for PP<0.5 
B=1 for PB 0.5 or P=0 for PB<0.5 
M=1 for PM 0.5 or P=0 for PM<0.5 
 
PF=exp(KF)/{1+exp(KF)} (18) 
KF=17-20.9·C-0.01·Mn-2.3·Cr-1.2·Ni-7.4·Mo-6.5·V-1.5·vR

0.25 (19) 
PP=exp(KP)/{1+exp(KP)} (20) 
KP=16-3.5·C-4·Mn-3.5·Cr-1.5·Ni-11.8·Mo-1.7·V-1.9·vR

0.25 (21) 
PB=exp(KB)/{1+exp(KB)} (22) 
KB=0.0015-2.54·C-0.74·Mn-0.3·Cr-0.2·Ni-2.3·Mo-1.85·V-
0.018·vR

0.25 (23) 

PM=exp(KM)/{1+exp(KM)} (24) 
KM=-10.9-1.7·C-2.9·Mn-3.7·Cr-0.9·Ni-3.7·Mo-2.5·V-1·vR

0.25 (25) 
 
The assessment of the significance of the regression 

coefficients are presented in Table 2. Significance level was 
specified of 0.05. The input variable is statistically significant if 
the p-value is less than 0.05. The mean error values, the standard 
deviation of the error and the correlation coefficient for the 
hardness model are given in Table 3. In Table 4 the quality 
assessment coefficients of the classifier are presented, used as 
classifiers yielding information on the successive transformations 
occurring along the analysed cooling curves.  

 
Table 2. 
The assessment of significance of regression coefficients 

 Coefficients Standard 
Error t Stat P-value 

Intercept -86.3305 35.70162 -2.41811 0.015753 
C 491.6927 24.263 20.26512 1.68E-78 

Mn 92.34665 14.82571 6.228819 6.54E-10 
Cr 69.01353 4.360176 15.82815 2.81E-51 
Ni 24.92482 3.172811 7.855754 8.95E-15 
Mo 101.742 13.58629 7.488582 1.37E-13 
V 267.2312 40.81646 6.547145 8.76E-11 
TA 0.063932 0.03227 1.981182 0.047805 

VR
0.25 21.70305 0.950688 22.82877 1.06E-95 

F -37.6321 5.582585 -6.74098 2.46E-11 
P -70.5438 6.369514 -11.0752 3.52E-27 
B -31.6706 4.233635 -7.48071 1.45E-13 
M 72.08688 5.671254 12.71092 9.11E-35 

 
Table 3. 
Error values and correlation coefficients for hardness model  

Error EHV, 
HV 

Standard 
deviation of 

the error, HV 

Quotient of 
standard 

deviations 

Pearson 
correlation 
coefficient 

46.9 35.6 0.23 0.92 

 
Table 4. 
Quality assessment coefficients for models, used as classifiers for 
determining the types of occurring transformations 

Transformation areas Coefficient of correct 
classifications, % 

Ferritic 88 
Pearlitic 88 
Bainitic 63 

Martensitic 83 
 
To verify the model worked out, the experimental hardness 

change curves were made as functions of cooling time were 
compared with curves calculated using hardness model. Examples 
of the curves worked out are shown in Figures 1-6. The 
comparative plots for the experimental and calculated hardness 
are presented in Figure 7. The distribution of the residuals 
calculated for pearlitic and martensitic transformation are 
presented in Figures 8-9. 

4.  Calculation results
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Fig. 1. The comparison of the experimental and calculated curves 
for the steels with a mass concentration of elements: 0.3% C, 0.5% 
Mn, 1.0% Cr, 0.2% Mo austenitised at temperature of 850°C 
 

 
 
Fig. 2. The comparison of the experimental and calculated curves 
for the steels with a mass concentration of elements: 0.3% C, 
0.8% Mn, 0.5% Cr, 0.55% Ni, 0.2% Mo austenitised at 
temperature of 850°C 
 

 
 
Fig. 3. The comparison of the experimental and calculated curves for 
the steels with a mass concentration of elements: 0.36% C, 0.7% 
Mn, 1.5% Cr, 1.5% Ni, 0.25% Mo austenitised at temperature of 
850°C 

 
 
Fig. 4. The comparison of the experimental and calculated curves 
for the steels with a mass concentration of elements: 0.44% C, 
0.8% Mn, 0.14% Cr, 0.2% Ni, austenitised at temperature of 850°C 
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870°C 

 

 
 

Fig. 7. Comparison of the experimental HV hardness with values 
calculated using the regression model 
 

 
 

Fig. 8. Distribution of residuals for classifier-martensitic 
transformation 
 

 
 

Fig. 9. Distribution of residuals for classifier-pearlitic 
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5. Summary 
 

The model worked out makes it possible to calculate hardness 
for the steel with a known chemical composition. Determining the 
curve of hardness changes versus cooling time, according to the 
method proposed in the paper, calls for determining the types of 
the structural constituents that occur in the steel after cooling from 
the austenitising temperature. The types of the structural 
constituents were determined using four bivalued nominal 
variables containing the information if the following constituents 
are present in the structure: ferrite, pearlite, bainite, martensite. A 
classifier had to be developed, to obtain this information, using as 
input data the mass concentrations of the particular alloying 
elements, austenitising temperature, and cooling rate.  

The presented model facilitates the analysis of the interaction 
of the chemical composition on the hardness curves of the  steel 
cooled from the austenitizing temperature. This model delivers 
crucial information for the reasonable choice of steel for those 
parts of the machines that are subjected to the heat treatment. The 
presented interrelations may also be of use when selecting the 
chemical composition and determining the austenitizing 
temperature for steels with a complex course of the supercooled 
austenite transformations. 

In the paper, the size of the austenite grain and the time of 
austenitizing, have not been taken into account because of the 
lack of the information in the majority of CCT diagrams used for 
preparing the data set. Moreover, simplifications concerning the 
chemical composition of the examined steels are often used and 
there are only mass concentrations of the basic elements of a 
given type of steel demonstrated. 

Calculation methods provide an alternative to experimental 
measurement in providing the material data required for heat 
treatment process simulation. 
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