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ABSTRACT

Purpose: The purpose of this article is to examine what influence on the transmission has a rotation 
of the vibration plane, which electric field vector of the electromagnetic wave lies, on the transmission 
properties of the binary superlattice. In the literature, the most common transmission structure are 
given for the P or S wave polarization. This article aims to verify the nature of the transmission when 
the polarization is not strictly defined.

Design/methodology/approach: In the paper the transmission of quasi one-dimensional binary 
structures is analized depending on the angle of incidence and wavelength of electromagnetic wave 
and on torsion angle of the plane of the electric field, using the matrix method.

Findings: Changing the angle of rotation of the incident electromagnetic wave electric field vibration 
plane affects the size of the interband transmission and causes separation of fixed transmission bands 
locations for specific wavelength and angle of incidence.

Research limitations/implications: Quasi one-dimensional binary superlattices composed 
of lossless, non dispersive isotropic materials were analyzed. It would be important to investigate 
influence of loss factor and the two- and three-dimensional periodic and aperiodic structures on the 
electromagnetic wave transmission. Also important would be to compare results with those obtained 
from the use of finite increments algorithm in the time domain (FDTD) and the correlation with 
experimental data.

Practical implications: The test structures may be used as filters of electromagnetic wave 
propagation. The structure and thickness of the layers has a significant influence on the characteristics 
of the transmission, which will allow to design the structure in order to met the conditions of specific 
applications.

Originality/value: In this paper, a method for the analysis of the electromagnetic waves transmission 
characteristics in the case where the electric field is not polarized in the S, or P directions only.
Keywords: Transmission; Multilayers; Superlattices; Aperiodic; LHM; RHM
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1. Introduction 
 
Filtering capabilities and properties of multilayer systems or 

advanced composite materials are the subject of intensive research 
[1-5], and are applicable in photonics, optoelectronics, solid state 
physics and optics. A unique property of these materials is the fact 
that electromagnetic waves of certain frequencies does not 
propagate in their specific systems, there is so-called photonic 
band gap. These materials do not occur naturally, but are designed 
and manufactured. Using this materials, photonic crystals [6-12], 
optical fibre photonic [13], quasi crystals [14-21] and multilayer 
structures [22-27] were obtained. The class of these structures 
also includes specific composites called metamaterials, that is, 
materials with a negative refraction index. The existence of such 
materials was predicted by Veselago in 1968 [28], in his 
theoretical work. Experimental confirmation of the Veselago 
theory took place in 2000 [29], which resulted in increased 
research of metamaterial structures properties [30-39]. 
Metamaterials are called left-handed material (LHM), while the 
conventional dielectric materials are called right-handed  
material (RHM). 

Preparation of multilayer structures is well established  
[40-44], so the production of selected superlattice structures, with 
specific thickness of the layers and types of component materials 
is possible. Simulation of the properties of these structures allows 
to pre-design them, which implies getting material properties 
needed for the application. Especially interesting is the use of 
these structures as filters of electromagnetic radiation in the 
visible light wavelength range. One way to analyse these 
properties is to study the transmission level of incident 
electromagnetic wave. An approach, that can be successfully used 
to study the transmission properties of these systems is called the 
matrix method [2]. That method was used in this work, and a brief 
description is provided below. 

Transmission in binary superstructures [2] has already been 
examined, but the analysis were limited to the TE (S-polarization) 
or TM (polarization P) polarization only. This article answers the 
question how the transmission of electromagnetic wave behaves 
in intermediate states located between the S and P type polarities, 
for different angles of incidence and for the wavelength of 
electromagnetic field in range of visible light (300-700 nm).  

 
 

2. Mathematical introduction 
 
Matrix method has been extensively described in [2, 37].  

The following are the basic ready to use formulas and additional 
correction, using Malus law, which allows for the calculation of 
transmission for any  angle of the electric field E intensity vector 
of vibrational plane rotation. Analysis of the one-layer system 
elucidates the method for determining the transmission, and after 
that extend it to a multi-layer model. 

Layer structure (Fig. 1) is defined as: 
 

dxn
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xn

out
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0,

1
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where d is layer thickness; nin, nout are refractive indices of the 
environment layers from which an electromagnetic wave enters 
into the structure and comes out. The refractive index is related to 
the characteristics of the material by the relation: 
 

rrn . (2) 

 
where r i r are respectively the relative permittivity of the 
electric and magnetic medium. 
 

 
 

Fig. 1. A thin layer of a dielectric medium [2] 
 

ztiexEE . (3) 
 
Equation (3) describes the electric field fulfilling the Maxwell 

conditions for a homogeneous medium ( n/ z = 0), where  is the 
angular frequency, and  is component along z axis of wave 
vector. E(x) in equation (4) contains components E(+)(x) of the 
electric field of the electromagnetic wave propagating in the 
direction of increasing z axis values and E(-)(x) in the opposite 
direction; kx is projection of the wave vector on the x axis. 

 
xExEBeAexE xikxik xx . (4) 

 
The electromagnetic wave is polarized as P-type when the 

magnetic field is parallel to the y axis (H || y), while for the  
S-polarization electric field intensity is parallel to the y  axis (E || y). 

Using of the dynamic matrix Din, D1 and Dout defined as: 
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where outin ,1,  is the layer number, angles  are 
related with Snell's law (Fig. 2), and the components of the wave 
vector can be defined as: 
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Fig. 2. The distribution of  angles in multilayer structure for  
P-type polarization (TM) 

 
A set of equations describing the behavior of the 

electromagnetic wave propagating in a single layer can be  
defined as: 
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In equation (7) Ø1 is defined as: 
 

dk x, . (8) 

 
Din,1 and D1,out matrixes combine the amplitude of electric 

field intensity at the medium borders and will be hereinafter 
referred to as the transmission matrixes.  

For P-type polarization transmission matrix can be defined as: 
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In contrast, for the S-type polarization transmission matrix 

takes the form: 
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Equations (9) and (10) can be defined in general form: 
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In equation (11) t and r are defined by Fresnel amplitude 
coefficients. Using those relations: 
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Fresnel transmission coefficients t and reflection r for P and S 

type polarization are presented in the literature in many equivalent 
ways [2,37,45], part of them are described by dependencies (13), 
(14), (15) and (16). 
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Matrix P1 is a matrix of electromagnetic wave propagation in 

the medium and is defined as: 
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Simplifying the set of equations (7) we get: 
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Transmission and propagation matrixes from the equation 

(18) describe the material properties of the multilayer system, 
which allows to collect them in a matrix , consisting of 
expressions Mi,j, and hereinafter referred to as the characteristic 
matrix.  
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Substituting equation (19) to (18) was obtained: 
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Fig. 3. Dielectric superlattice [2] 

Figure 3 shows the multilayer structure defined as: 
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for which the layer thicknesses are defined respectively: 
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For multilayer systems equation characterizing the behavior 

of an electromagnetic wave propagating in the structure can be 
described: 
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Characteristic matrix of the dielectric superlattice system after 

a few simple transformations analogous to the case of a single 
layer takes the form: 
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Fig. 4. Rotation of the vibration plane of the electric field 
intensity by the angle   

 
The characteristic matrix can directly determine the  

T transmission of electromagnetic wave for a multilayer structure 
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Fig. 4. Rotation of the vibration plane of the electric field 
intensity by the angle   

 
The characteristic matrix can directly determine the  

T transmission of electromagnetic wave for a multilayer structure 
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Note that for the lossless structures between the transmittance 
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law: 
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Use of Malus law (28) for determining the transmission (25) 
leads to the following relationship: 
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Rotation of the vibration plane of electric field intensity 

according to the angle  shows Figure 4. 
 

 
Fig. 5. Transmission map for P-type polarization 

 
 

3. Research 
 
To analyse the transmission of binary structure the 

transmission map were used. The horizontal axis indicates 
wavelength  [nm] for electromagnetic wave incidenting at an 
angle  relative to the normal of the multilayer structure (Fig. 2). 

White colour in the graphs indicates the full transmission of the 
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repeated regularity. It was also noted the occurrence of location 
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Figures 11 and 12 shows the structure of a transmission for  
a vibration angle rotation of the electromagnetic wave's electric 
field plane equal to  = 45°, in case, when material B has  
a negative refractive index nB = - 3.4. For Figure 13 torsion angle 
is  = 30°. 

 

 
 

Fig. 12. Imposition of transmission graphs  for different angles  
with  = 45°, for nB = - 3.4 

 

 
 

Fig. 13. Imposition of transmission graphs  for different angles  
with  = 30°, for nB = - 3.4  

 
 

4. Conclusions 
The obtained results indicate:  
the transmission has a band structure, but the bandwidth is 
wide and bands are not separated from each other, 
polarization of the incident wave significantly affects the 
transmission of the structure ABA, 
change the material B refractive index  from RHM to LHM 
significantly alters the transmission, 
change the angle of torsion  of the electric field's oscillation 
plane affects the size of space of interband transmission, 
the presence of fixed transmission bands for specific 
wavelength and angle of incidence when changing the torsion 
angle . 

Understanding the properties of multilayer structures affect 
the ability of filter design of electromagnetic waves with 
characteristics suited to application data. Especially important is 
to learn the properties of metamaterials and their impact on the 
transmission of system because their characteristics are promising 
and also only partially understood. 

It appears advisable to investigate the influence of the angle  
on the transmission properties of aperiodic structures, as well as two 
and three dimensional structures and the correlation of results with 
experimental data. For further consideration also should be taken 
impact of angle  of lossy materials with a specific dispersion. 
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Figures 11 and 12 shows the structure of a transmission for  
a vibration angle rotation of the electromagnetic wave's electric 
field plane equal to  = 45°, in case, when material B has  
a negative refractive index nB = - 3.4. For Figure 13 torsion angle 
is  = 30°. 
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