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ABSTRACT

Purpose: Particle-reinforced composite materials very often provide unique and versatile 
properties. Modelling and prediction of effective heterogeneous material behaviour is 
a complex problem. However it is possible to estimate an influence of microstructure 
properties on effective macro material properties. Mentioned multi-scale approach can lead 
to better understanding of particle-reinforced composite behaviour. The paper is focused on 
prediction of an influence of particle shape on effective elastic properties, yield stress and 
stress distribution in particle-reinforced metal matrix composites.
Design/methodology/approach: This research is based on usage of homogenization 
procedure connected with volume averaging of stress and strain values in RVE (Representative 
Volume Element). To create the RVE geometry Digimat-FE software is applied. Finite element 
method is applied to solve boundary value problem, in particular a commercial MSC.Marc 
software is used.
Findings: Cylindrical particles provide the highest stiffness and yield stress while the lowest 
values of stiffness and yield stress are connected with spherical particles. On the other hand 
stress distribution in spherical particles is more uniform than in cylindrical and prismatic 
ones, which are more prone to an occurrence of stress concentration.
Research limitations/implications: During this study simple, idealised geometries of the 
inclusions are considered, in particular sphere, prism and cylinder ones. Moreover, uniform size 
and uniform spatial distribution of the inclusions are taken into account. However in further work 
presented methodology can be applied to analysis of RVE that maps the real microstructure.
Practical implications: Presented methodology can deal with an analysis of composite 
material with any inclusion shape. Predicting an effective composite material properties by 
analysis of material properties at microstructure level leads to better understanding and 
control of particle-reinforced composite materials behaviour.
Originality/value: The paper in details presents in details an investigation of influence of 
inclusion shape on effective elastic-plastic material properties. In addition it describes the 
differences between stress distributions in composites with various inclusion shapes.
Keywords: Particle-reinforced composite; Shape effects; Homogenization; Micromechanics
Reference to this paper should be given in the following way: 
W. Ogierman, G. Kokot, Particle shape influence on elastic-plastic behaviour of particle-
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1. Introduction 

Particle-reinforced metal matrix composite materials 
have found application in many areas of engineering 
practice. They usually provide higher strength, stiffness and 
weight savings in comparison with conventional metal 
alloys. Moreover this group of materials is attractive due to 
their cost-effectiveness and isotropic properties [1]. 
Estimation of elastic-plastic response in particle-reinforced 
composites is very complex issue because it depends on 
variety of factors such as particle size, shape, distribution or 
residual stresses. This study focuses on analysis of particle 
shape effects. The main objective of this work is an 
investigation of influence of particles shape on composite 
stiffness, yield stress and stress distribution in material 
phases. In order to estimate a stiffness of heterogeneous 
material, classical mean field methods can be used. This 
group of methods is based on well-known equivalent 
inclusion approach of Eshelby [1-3]. Advantage of this 
approach is computational efficiency and simplicity. On the 
other hand it has got limitations, for example it is generally 
restricted to analysis of inclusions of spheroid shape. 
Approach that can handle with analysis of any particle shape 
is finite [4-6] or boundary [8,9] element analysis of 
representative volume element (RVE). RVE is a statistical 
representation of material properties. It should contain 
enough information to describe behaviour of considered 
composite [8]. During this study a commercial software 
Digimat-FE is used to generate the RVE 3D geometry [10]. 
Created finite element models based on the geometry created 
in Digimat are solved by application of MSC.Marc software. 

2. Analysis of the RVE 

2.1 Geometry preparation

During this research three arbitrary shapes of 
inclusions, which geometries are presented in Fig. 1, are 
taken into account A geometry of the RVE is generated 
using Digimat-FE software [10]. Each RVE is a cube filled 
with randomly oriented 20 particles. Volume fraction of the 
particles is 0.2 and they are randomly distributed in space 
without interpenetration. Figs. 2-4 show distribution of 
particles in created RVEs.  

2.2 Estimation of effective properties 

To calculate the effective elasticity tensors of 
heterogeneous materials the usage of homogenization 

procedure is essential. The homogenization procedure 
involves replacing the heterogeneous material with an 
equivalent homogeneous material. Calculation of the 
equivalent material properties requires to solve six RVE 
boundary value problems (BVP) in three dimensional case. 
For each BVP a prescribed strain is applied in accordance 
with equation 1 (a superscript indicates the number of 
analysis).

a)

b) 

c)

Fig. 1. Shapes of the inclusions: a) spherical; b) prismatic; 
c) cylindrical 

Fig. 2. RVE containing spherical particles 
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Fig. 3. RVE containing prismatic particles 

Fig. 4. RVE containing cylindrical particles 

(1) (2) (3) (4) (5) (6)

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

     
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (1) 

In addition, periodic boundary conditions are 
introduced [2]. During this study, finite element method is 

applied to solve BVP, in particular commercial software 
MSC.Marc is used. Strains and periodic boundary 
conditions are prescribed via multi-point constraints (MPC). 
After solving six BVPs, both the stresses (2) and strains (3) 
are averaged in post-processing stage of the analysis [7]. 

1
RVE

ij ij RVEVRVE
dV

V
 (2) 

1
RVE

ij ij RVEVRVE
dV

V
 (3) 

where ij is average stress, ij  is average strain, ij is 
stress in the RVE, ij is strain in the RVE and RVEV  is 
volume of the RVE. 

Elasticity matrix CRAW that binds average stress and 
average strains is expressed by: 

ij RAW ijC  (4) 

Due to the random orientation of the particles in space, 
isotropic elastic properties are expected. However, 
calculated tensor CRAW is not perfectly isotropic and even 
symmetric. Symmetrisation of raw tensor is performed in 
accordance with: 

2

T
RAW RAWC CC  (5) 

To define isotropic material parameters approximate 
Lamé parameters are determined as isotropic 
approximation of an anisotropic stiffness tensor [11]: 

11 22 33 44 55 66 12 13 23
1 2( ) 4( )

15
C C C C C C C C C  (6) 

11 22 33 44 55 66 12 13 23
1 3( ) ( )

15
C C C C C C C C C  (7) 

The Young modulus and the Poisson ratio expressed by 
the Lamé parameters can be defined as follows [13]: 

(3 2 )E  (8) 

2( )
v  (9) 

To compare the results of finite element based 
homogenization with existing analytical models, a well 
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known Mori-Tanaka mean field method is considered. Mori-
Tanaka strain concentration tensor can be shown as [15]: 

1[(1 ) ]MT
i iA S v I v S (10) 

and effective stiffness tensor of composite can be written in 
closed form as follows [9]  

1[( ) ( )]MT MT
m i i m m iC C f C C A f I f A  (11) 

where S is an Eshelby tensor, I is identity tensor, Cm and Ci
are stiffness tensors of matrix and inclusion material, 
respectively, fm and fi are volume fractions of matrix and 
inclusion phases. Eshelby tensor components for spherical 
inclusion can be written in explicit form as [16]: 

11 22 33
7 5

15(1 )
m

m

vS S S
v

 (12) 

12 23 31 13 21 32
5 1

15(1 )
m

m

vS S S S S S
v

 (13) 

44 55 66
4 5

15(1 )
m

m

vS S S
v

 (14) 

The remaining tensor components are zeros. 
Investigation of inclusion shape influence on plastic 

behaviour of composites is conducted by enforcing uniaxial 
strain on the RVE. Three analyses, assuming different 
strains, are performed for each RVE: 

(1) (2) (3)
11 22 330.015   0.015   0.015  (15) 

In this case the matrix constitutive behaviour is modelled 
as elastic-plastic and inclusion as linear elastic. Stress-strain 
curve is obtained as a result of each analysis. For each case 
0.2% offset yield stress was determined. Finally, an effective 
0.2% offset yield stress of composite is evaluated as 
arithmetic mean of that obtained in three analyses: 

(1) (2) (3)
0.2 0.2 0.2 0.2

1 ( )
3

EFF
p p p pR R R R  (16) 

2.3 Constituents properties and discrete model 

Assumed properties of the composite constituents are 
presented in Tables 1 and 2. Both matrix and inclusion 
materials models are linear in analysis of effective elastic 
properties. Considered properties are typical for aluminium 
alloy 6061T6 and SiC particles. In case of estimating 

elastic-plastic response the matrix is modelled as elastic-
plastic material and the inclusion as elastic material. 

Fig. 5 shows finite element discretization of the RVE in 
case of analysis of spherical reinforcement. Approximately 
83000 of tetrahedral finite elements with quadratic shape 
functions were created in all cases 

Table 1. 
Properties of the matrix material 

Property Value Units 
Modulus of elasticity  68.9  GPa 
Poisson’s ratio  0.35  
Yield stress  276  MPa 
Hardening constant  255 MPa 
Hardening exponent 0.3  

Table 2. 
Properties of the inclusions material 

Property Value Units 
Modulus of elasticity  410 GPa 
Poisson’s ratio  0.19  

Fig. 5. Discretization of the RVE with spherical particles 

3. Results and discussion

Computed normalised Young modulus and Poisson 
ratio of analysed representative volume elements are 
collected in Table 3. Normalised Young modulus and 
Poisson ratio are expressed as: 

eqv

m

E
E

E
 (17) 

3.  Results and discussion

2.3.  Constituents properties and discrete model
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eqv

m

v
v

v  (18) 

where subscripts eqv and m indicate homogenized 
equivalent properties and matrix properties, respectively. 

Detailed analysis results in form of computed elastic 
tensors are shown for the case of the composite reinforced 
with spherical particles. Tensor C(M-T) (19) presents the 
results of Mori-Tanaka homogenization. Tensor CRAW

(FE) is 
the result of six finite element analysis of the RVE, the 
non-orthotropic terms are assumed implicitly as zeros. The 
best isotropic fit of obtained anisotropic CRAW

(FE) tensor  is 
expressed in form of tensor CISO

(FE) (21).  

Table 3. 
Material properties of analysed composite 

Particle shape Normalised 
Young modulus  

Normalised 
Poisson ratio 

Sphere (Mori-
Tanaka) 

1.347 0.940 

Sphere (FEM) 1.371 0.933 
Prism 1.417 0.922 

Cylinder 1.462 0.867 

( )

137208.89 67377.88 67377.88 0 0 0
67377.88 137208.89 67377.88 0 0 0
67377.88 67377.88 137208.89 0 0 0

0 0 0  34915.50 0 0
0 0 0 0 34915.50 0
0 0 0 0 0 34915.50

M TC  (19) 

( )

138156.02 66758.81 66659.03 0 0 0
66936.11 138269.70 66667.18 0 0 0
66773.79 66607.88 138222.77 0 0 0

0 0 0 35521.53 0 0
0 0 0 0 35386.65 0
0 0 0 0 0 35702.70

FE
RAWC  (20) 

( )

 137989.97 66843.21 66843.21 0 0 0
66843.21  137989.97 66843.21 0 0 0
66843.21 66843.21 137989.97 0 0 0

0 0 0 35618.62 0 0
0 0 0 0 35618.62 0
0 0 0 0 0 35618.62

FE
ISOC   (21) 

It can be observed that there is a difference between 
Mori-Tanaka and finite element based prediction of 
material stiffness tensors; finite element solution gives 
higher value of Young modulus. In comparison with 
spherical particles, prismatic and cylindrical reinforcement 
shapes provide higher material stiffness. 

Assuming elastic-plastic behaviour of the matrix material, 
stress-strain curves of composite are shown in Fig. 6. 

Fig. 6. Stress-strain curves for composites with different 
particle shapes, uniaxial tension. 

Calculated equivalent 0.2% offset yield stresses for 
different reinforcement shapes are collected in Table 4. In 
addition, a  standard deviation of data obtained in three 
uniaxial tension tests is presented. It can be observed that 
the yield stress of composite reinforced with prismatic and 
cylindrical particles is higher than yield stress of composite 
with spherical reinforcement. 

Table 4. 
Equivalent 0.2% offset yield stress for different 
reinforcement shapes, MPa 

Particle shape Yield stress, 
MPa

Standard 
deviation 

Sphere 343.53 1.06 
Prism 361.40 3.07 

Cylinder 363.19 3.41 

Fig. 7 shows maximum principal stress distribution in 
analysed reinforcements in case of uniaxial loading with 
prescribed 0.01 strain.  

Fig. 8 and 9 show probability density distributions of 
stresses in the matrix and particle phases in case of uniaxial 
loading with prescribed 0.01 strain. Analysis of Fig. 8 leads 
to the conclusion that there are no significant differences 
between stress distributions in the matrix computed for 
analysed reinforcement shapes. However comparison of 
stress distribution in the particle phase, shown in Fig. 9, 
suggests that stress distribution in spherical particles is 
significantly different than in prismatic and cylindrical 
ones. The probability of occurrence of high stress values is 
higher for prismatic and cylindrical particles than for 
spherical particles which provide more uniform character 
of stress distribution. 
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a)

b) 

c)

Fig. 7. Maximum principal stress distribution in  
a) spherical, b) prismatic, c) cylindrical particles (uniaxial 
loading with prescribed 0.01 strain, maximum visualised 
value is 1 GPa) 

Fig. 8. Probability density distribution of Von Mises 
stresses in the matrix (uniaxial loading with prescribed 0.01 
strain)

Fig. 9. Probability density distribution of maximum 
principal stresses in the particles (uniaxial loading with 
prescribed 0.01 strain) 

4. Conclusions 

During this study the elastic-plastic effective properties 
of composites reinforced with particles of different shape 
were investigated. Conducted finite element analysis of the 
RVE allowed to take into account an arbitrary shape of the 
particle. Three different particle shapes were considered: 
spherical, prismatic and cylindrical. Cylindrical particles 
provide the highest stiffness and yield stress while the 
lowest values of stiffness and yield stress are connected 
with spherical particles. On the other hand, the stress 
distribution in spherical particles is more uniform than in 

4.  Conclusions
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cylindrical and prismatic ones. In other words in cylindrical 
and prismatic particles stress locally reaches higher values 
than in spherical particles. Predicting an effective 
composite material properties by analysis of material 
properties at microstructure level can lead to better 
understanding and control of particle-reinforced composite 
materials behaviour.
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