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ABSTRACT

Purpose: The investigations have been carried out on test pieces of 316L stainless steel 
parts fabricated by Selective Laser Sintering technique. The effect of selective laser sintering 
parameters such as power output, laser distance between the points sintered metal powder 
during additive manufacturing as well as the orientation of models relative to the laser beam 
and substrate on the roughness, surface morphology and wear resistance of manufactured 
models were performed.
Design/methodology/approach: To fabricate 316L stainless steel parts, the method 
using selective laser sintering (SLS) technique, using Renishaw AM 125 machine is utilised. 
Wear resistance, roughness and surface morphology of SLS produced samples prepared via 
different process parameters are investigated.
Findings: The results show that the wear resistance and surface morphology are strongly 
influenced by orientation of the parts relative to the laser beam, power output of laser and 
laser distance between the points sintered metal powder during additive manufacturing.
Research limitations/implications: In the nearest future, studies will be conducted to 
establish influence of laser parameters such as scan speed, focus offset, exposure time, 
diameter of laser beam and hatch parameters such as hatch type and hatch distance on the 
quality and density of AM steel parts.
Practical implications: Stainless steel is one of the most popular materials used for 
selective laser sintering (SLS) processing to produce nearly fully dense components from 
3D CAD models. Reduction of surface roughness is one of the key research issues within 
the additive manufacturing technique SLS, since one of the major cost factors is the post 
processing of surfaces by means of milling, turning, grinding and polishing.
Originality/value: This paper can serve as an aid in understanding the importance of 
technological parameters on quality and wear resistance of manufactured AM parts made 
by SLS technique.
Keywords: Selective Laser Sintering; Rapid prototyping; Additive manufacturing
Reference to this paper should be given in the following way: 
M. Król, M. Kujawa, L.A. Dobrzański, T. Tański, Influence of technological parameters on 
additive manufacturing steel parts in Selective Laser Sintering, Archives of Materials Science 
and Engineering 67/2 (2014) 84-92.

MATERIALS MANUFACTURING AND PROCESSING



85READING DIRECT: www.archivesmse.org

1. Introduction 

Among the known methods of additive manufacturing 
(AM) [1,2], the most accurate technology is selective 
laser sintering SLS, which is becoming a firmly 
established digital manufacturing method in the additive 
technology of metallic parts [3-5]. SLS technology 
belongs to the modern additive technology, which 
combines to one process the complex steps of scanning, 
design and fabrication where the three-dimensional model 
is performed layer by layer. It comes from rapid 
prototyping methods currently used successfully for the 
production of the final products [6-8]. SLS technology is 
developing at a very fast rate which is associated with a 
lot of studies being carried out systematically by many 
research centres, both related to the design and production 
of components with this method. This confirms, for 
example the long-term cooperation of NASA (National 
Aeronautics and Space Administration) with scientists 
from Missouri University of Science and Technology (S 
& T) at the forefront of prof. F. Liou, whose research 
conducted within the allocated grants, are contributing to 
progressive development of the SLS technology towards 
obtaining more durable materials with high mechanical 
properties used in the aerospace [9,10]. SLS method will 
enable the production of a single and series of components 
of very complex shapes and intricate construction, which 
allows for their use in many industries [4,6,7,10], among 
others, in the armaments industry, aerospace, automotive 
[11], medical [12-14], as well as the production of solar 
cells used in photovoltaics [15-17].  

The idea of selective laser sintering technology is 
producing elements of layer upon layer of powders with  
a particle size (grain) up to 50 microns by sintering the 
subsequent layers using a computer controlled laser beam. 
SLS system consists of the laser, the working chamber and 
the control system. In the working chamber, a thin layer of 
material is distributed by powder scraper on a movable 
platform, and is then sintered by laser beam for a two-
dimensional cross-section element, after which the 
platform is lowered by the thickness of the layer. The 
powder scraper again then spreads the powder layer which 
is imposed on to the previously sintered layer (Fig. 1). 
During the sintering process, the elements are created using 
a diffusion mechanism [5,7,8]. 

Among the available materials, titan and its alloys, iron 
alloys, copper alloys, nickel alloys, ceramics, polymers and 
for instance, tungsten carbide [18-23], are currently being 
successfully used in SLS technology, but the most 
commonly used are stainless steel [5,8,17,24,25]. 

Fig. 1. Scheme of Selective Laser Sintering process 

Many parameters govern the process of producing 
components from stainless steel, and consequently affect 
the quality of surface and mechanical properties of the 
sinter products, which can be classified according to four 
main categories. These are, material properties, laser 
parameters, the scanning process parameters and 
environmental parameters. More precisely, they include 
size of powders, laser beam power, process time, powder 
mass feed rate, beam patch overlap and layer thickness 
[8,26,27]. Powder properties and fabrication parameters 
have a strong influence on the roughness and wear 
resistance of SLS, with the latter more significantly. 
Therefore, in order to understand the relationship between 
the process parameters, roughness and wear resistance are 
the circumstance to improve the accuracy of the parts. It is 
also necessary to develop the intelligent process control 
and automation and to allow us to produce the parts with 
the desired dimensional and geometrical accuracy [3,28-30]. 
Due to the multitude of parameters and their possible 
combinations, using the method of SLS encountered certain 
limitations connected with producing elements with a 
larger surface roughness compared to the elements 
obtained by conventional methods, with the stresses, 
distortion, inaccuracy and porosity [18,26,29,31].  

Many attempts have been made to improve the parts 
produced by SLS process, but the progress has been slow 
because of the complex nature of the SLS process. In 
recent years, various processes have been used for surface 
integrity of the SLS component, to obtain lesser roughness 
with sufficient dimensional accuracy, and increased wear 
resistance for the application, such as post-processing 
treatments and by the use of laser remelting. Shi and 
Gibson [32] used a robotic finishing system to improve the 
overall surface quality (surface roughness, dimensional 
accuracy and geometrical accuracy) of SLS parts. Ramos et 
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al. [33], reported that it is possible to reduce surface 
roughness using a high laser power polishing technique 
using either CO2 and Nd:YAG lasers. Paul et al [34] 
developed a methodology to calculate the laser energy of  
a part manufactured in the SLS process and to correlate the 
energy to the part geometry, slice thickness and part 
orientation. Olakanmi [35] reported the effect of mixing 
time on the homogeneity of aluminium powder blends and 
its SLS processed density and microstructure, concluding 
that high porosity in the powder inhibits effective thermal 
conductivity between aluminium particles, thereby leading 
to deterioration of the sintered density and microstructure 
of the SLS processed samples. There is therefore a need to 
optimise process parameters which have a direct impact on 
the final product in terms of mechanical chemical and 
functional properties. 

Some efforts have been made in recent years to tackle 
the surface integrity problem through optimisation of the 
SLS process. Most authors correspond process parameters 
with the wear resistance of SLM processes. Sun, Moroz 
and Alrbaey [36] reported the abrasive wear performance 
of SLM materials including stainless steel. However, very 
few parameters have been taken into consideration to 
investigate the sliding wear behaviour and corrosion 
resistance properties of SLM stainless steels. These two 
categories of properties are important in engineering 
components used in wear and friction conditions, as is 
expected for many stainless steel components. There is 
limited information about the influence of the SLS process 
parameters on surface roughness and wear resistance of 
SLS metallic parts. 

In present work, a study has been conducted to 
investigate the wear resistance, roughness and surface 
morphology of SLS 316L stainless steel samples produced 
under various laser power, point distance and orientation of 
models relative to substrate. Tribological testing was 
carried out under dry sliding condition without lubrication. 
Microstructural evolution was studied using optical and 
scanning electron microscopy. The obtained results are 
presented and discussed in this paper. 

2. Experimental procedure and materials 

The gas atomised powders of stainless steel 316L with  
a grain size in the range of 15-45 µm, supplied by Renishaw 
Company were used. This alloy is an austenitic nickel-
chromium steel which is widely used in pharmaceutical, 
chemical, petrochemical, energy and pollution control 
industries and is used successfully in producing metal parts 

through additive manufacturing. That austenitic steel shows 
no phase transformations. Precipitations of secondary 
phases can only occur after long term tempering. 

Experiments were performed by SLS machine type AM 
125 (Renishaw) with the main characteristics parameters 
listed below: 

the maximum laser power – 200 W, in continuous mode,  
the maximum laser scanning speed – up to 2000 mm/s, 
laser beam – 35 µm diameter at powder surface, 
layer thickness – 20-100 µm.  
The source of radiation is YFL continuous wave 

Ytterbium fibre laser with a wavelength =1070 nm.  
A powder layer thickness of 50 µm was employed to 

build up the sample layer by layer in argon atmosphere. 
This layer thickness shows a good compromise between 
density and production time [4,31]. The metallic parts were 
produced using the SLS method in which the variables 
were the output power of the laser and point distance. The 
samples were built on a steel plate of 125 mm x 125 mm, 
with different power output (P) ranging from 100 to 200 W 
and different point distance (PD) ranging from 10 to 50 µm. 

Although SLS components are known to have a 
relatively rough surface finish, which is expected to affect 
the tribological properties of the components, the main 
focus of present work is the wear resistance, roughness and 
surface morphology behaviour of SLS samples. 

The samples consisted of two walls with a thickness of 
1 mm (Fig. 2). One of the walls was oriented perpendicularly 
to substrate, and second one was oriented at an angle of  
60 degrees. 

Fig. 2. Visualisation of the wall orientation in the samples 

The selected technological properties of powder SS 
316L like flowability, bulk density and tapped density were 
measured by Hall Flowmeter funnel according to ISO 
3923-2. 

2.  Experimental procedure and materials
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Wear test investigations of surface samples were 
performed using the ball-on-plate method and obtained 
wear tracks were measured on profilographometer Sutronic 
25 of Tylor-Hubson Company. As a counterpart a steel ball 
was applied with a diameter of 6 mm. The investigations 
were performed at room temperature (22 C), by a defined 
friction path distance with the following testing parameters: 
Fn=10 N load, friction speed 4.5 cm/s, friction path 35 m 
and movement rate v=0.05 m/s. All tests were conducted in 
ambient atmosphere and under dry, unlubricated 
conditions. 

The depth of wear trace after wear abrasion test has 
been observed and measured using a confocal microscope 
ZEISS LSM Exciter 5. 

The surface morphology was observed on scanning 
electron microscopy Supra 35 of Zeiss Company. To obtain 
the images of investigated samples, the detection of 
secondary electrons (SE) was applied, with the accelerating 
voltage 25 kV. 

3. Results and discussion 

Based on measurements of technological properties of 
powder SS 316L it was found that the flowability 
according to the PN-82/H-04935 standard was 22 s. Bulk 
density according to the PN-EN 23923-1:1998 standard 
was 4.19 g/cm3 and tapped density according to the PN-EN 
ISO 3953:2011E standard was 4.92 g/cm3.

Figure 3 shows the morphologies of the 316L stainless 
steel powders. As shown, the as-received SS 316L powder 
is dominantly regular with spherical shaped powders. 

Fig. 3. SEM-SE image of the supplied Renishaw 316L 
powder 

Figure 4(a) and (b) shows the external surfaces of 
perpendicular and oblique SLS samples, respectively. The 
external surfaces of the parts fabricated by the SLS process 
have different roughness because of the difference in power 
output, point distance and orientation of walls. The surfaces 
of perpendicularly built walls (Fig. 4a) are characterised 
being slightly pleated without any discontinuity. For 
obliquely built walls the discontinuities and more pleats are 
formed by overlapping layers. 

Investigations in scanning electron microscopes 
confirm the effect of adhered powder particles to the 
surface, which is unavoidable issue in SLS process (Fig. 4). 
This problem generally leads to the insufficient surface 
quality of produced components, meaning that the surface 
roughness increases (this property in some cases is 
required, for implants consisting of a solid core and a 
porous, strongly developed surface layer). However, this 
effect is not intentionally induced but is only a side effect 
of a sintering process. The effect of adhered particles is 
caused by the occurrence of heat affect zone around the 
sintering place, occurring during the laser scanning of 
metal powder which is a cause of leaving metal powder 
around which is not fully sintered around the sintering area. 

A disadvantage of SLS is the rough surface finish, which 
usually requires machining of the parts for example by 
grinding or sandblasting, in order to comply with the 
geometrical and mechanical strength requirements. An 
irregular surface results from the “staircase effect” of the 
AM process and also from powder particles sticking to the 
surface. A number of studies have been conducted in the 
field of surface roughness and wear resistance analysis of 
parts processed by various AM technologies (see e.g. Kumar 
and Kruth [18], Spierings et al. [26], Sachdeva et al [29], 
Ramos et al [32], Sun [36], Mumtaz and Hopkinson [37]). 

Figure 5 shows the surface roughness measurement 
results of samples oriented parallel and inclined at an angle 
of 30 degrees in respect of a laser beam. In both cases, 
orientation of models to the laser beam, observed the 
increase in surface roughness during increase the point 
distance ranging from 10 to 50 µm. Additionally the 
surface roughness of the models oriented parallel to the 
laser beam in most cases is higher than that surface of the 
models orientated at an angel of 30 degrees in respect to 
the laser beam, except the sample made at P=200 W 
PD=50 µm. 

The highest value of surface roughness Ra=8.3 m was 
observed for parts made at P=100 W and PD=50 m
oriented parallel to the laser beam. The smallest value of 
surface roughness Ra=2.6 m was observed for parts made 
at 100 W and 10 µm oriented at an angle of 30 degrees in 
respect of the laser beam.  

3.  Results and discussion
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temperature of 22 C for a wear track of 35 m. The friction 
curve has a characteristic shape, with the initial transient 
state with an unestablished curve, which a friction 
coefficient increases as the wear track increases until 
stabilising. This state takes place after approx. 12-15 m. 
The reason of long time of stabilisation tribological process 
is initialisation chipping (removing) adhered particles from 
the surface. The registered friction coefficient in the SLS 
samples ranges from 0.75 to about 0.9 depending on laser 
power, point distance and orientation of models. 

The typical wear track profiles measured by 
profilometer of the SLS models deposited using the 
processing conditions in Figure 2 are shown in Fig. 7. 

a)

b) 

c)

d) 

Fig. 7. Surface profiles measured across wear tracks on
selected samples: a) 100 W, 10 µm (parallel); b) 100 W,
10 µm (30 deg.); c) 200 W, 50 µm (parallel); d) 200 W,
50 µm (30 deg.) 

It can be found that a decreasing power output induces 
deeper and wider wear tracks produced on the SLS 
samples, as is presented in Fig. 7. In contrast to the 

influence of the changes of laser power on wear resistance 
properties of models, the change of the point’s distance of 
the laser spot has a significant influence on changes in the 
geometry of wear tracks. The influence of this parameter 
on the wear tracks may be observed on the surface 
topographies obtained by confocal microscopy (Fig. 8). 
With the increase of the distance between the sintering 
points, the size of wear track increases and caused a 
worsening in the functional properties of perpendicular and 
oblique oriented surfaces. 

a)

b) 

Fig. 8. a) After tribology test, SLS parameters 100 W, 
10 µm, b) after tribology test 100 W, 50 µm SLS parameters

The wear depth of the perpendicular samples is about 
45 m, while that of the oblique samples is as deep as  
65 m. Changing orientation of the model from 
perpendicular to oriented at an angle of 30 degrees, in 
respect of a laser beam, induces an increase of wear 
resistance which can be related to the stair step effect. The 
surface has many sharp edges which are crumbling during 
wear resistance test, thereby there is increasingly rapid 
wear of the element. (For the elements oriented at an angle 
of 30 degrees in respect of the laser beam, wear track is 
much wider and deeper, when compared to track obtained 
for the surface oriented parallel to the laser beam). 
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The study results showed that with increasing points 
distance of the laser spot the functional properties of 
parallel and surfaces oriented at an angle of 30 degrees in 
respect to the laser beam get worse.  

The presented results of the effect of the SLS process 
parameters on the roughness and wear resistance can be 
used to analyse the artificial neural network in order to 
select the proper process conditions without having to 
perform additional research. 
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