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ABSTRACT

Purpose: The microstructure of the new ledeburitic, tool cast steel of the precipitation 
hardened matrix was designed. The concept of this microstructure was based on the 
microstructure of the steel-bonded carbides [1,2], in which a skeleton is built of sintered 
carbides. This skeleton is produced by the powder metallurgy methods and then filled with 
melted steel of the selected chemical composition.

Design/methodology/approach: The new cast steel of the structure analogous to the 
steel-bonded carbides was conventionally melted in a furnace, however with omitting 
pressing and sintering operations of the powder metallurgy. The carbides skeleton in the 
new cast steel is formed by carbides of the MC type forming jointly ledeburite and its matrix 
constitutes steel hardened by precipitates of intermetallic compounds. This new material 
will be destined for tools of a moderate hardness (approximately 40 HRC), high abrasion 
resistance and high strength.

Findings: Utilising hard carbides forming by elements of VB group of the Mendeleev’s table 
it is possible to design the tool material similar to the steel-bonded carbide of the selected 
matrix composition and primary carbides of MC type. 

Research limitations/implications: The chemical composition the matrix of designed 
material decides on its hardness and strength, the MC type carbides decide on the abrasion 
resistance and if they occur in the eutectic form they decide on a rather low fracture 
toughness. Therefore efforts should be undertaken to have non-ledeburitic materials.

Practical implications: As a result of these investigations a new precipitation hardened 
cast steel have been worked out and a possibility of its industry applied was shown.

Originality/value: The results of investigations of phase transformations in the new 
cast steel at its heating and cooling from the austenite range, are presented in the hereby 
paper.

Keywords: Materials; Metallic Alloys; Precipitation hardened cast steel; Phase transformations; 
Dilatometric investigations
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1. Introduction 

Precipitation hardening (PH) steel (commonly called 

age-hardening) occurs when, one phases precipitate from 

a supersaturated solid solution [1,2]. Precipitation of inter-

metallic compounds in a martensitic matrix is known as an 

effective method of producing low-carbon, high-strength 

and high ductility marage steels. PH stainless steels can be 

either austenitic, semi austenitic or martensitic depending 

on the alloying element additions to the composition. 

Martensitic PH stainless steels usually contain 4-7% nickel 

to keep the Ms temperature above room temperature. 

Elements added to form precipitates are copper, molybde-

num, aluminum, titanium and niobium [2,3].  

These steels are widely used as construction materials 

for chemical and power plants because of their balanced 

combination of good mechanical properties and adequate 

corrosion resistance. After a supersaturation, this alloy is 

precipitation hardened by tempering at about 580°C for 

about 4 hours [4].  

The concept of the new cast steel microstructure was 

based on the microstructure of steel-bonded carbides [5,6]. 

This new material was conventionally produced by casting 

the melt, of the determined chemical composition, without 

using the powder metallurgy methods. It was assumed 

that the matrix will constitute the known, classic marten-

sitic steel hardened by precipitates (PH) of the grade: 

X5CrNiMoCuNb14-5 (PN-EN 10088-1:1998) of the ave-

rage chemical composition: 0.05% C; 14.0% Cr; 5.0% Ni; 

1.60% Mo; 1.60% Cu and 0.40% Nb. The network of 

carbides at the grain boundaries will be formed by 

vanadium carbides MC type, forming jointly ledeburite in 

the new cast steel.  

It was decided to supplement the chemical composition 

of the mentioned PH steel (for the formation of the primary 

VC carbides) by adding approximately 1.00% C and 

4.25% V. The quotient of the additional vanadium and 

carbon content resulted from the quotient of their atomic 

masses: 

2414
01012

94150

Cat.m.

Vat.m.
.

.

.
   (1) 

This means that for the formation of the VC carbides 

the addition of 1% C should be accompanied by the addi-

tion of approximately 4.25% V. 

The chemical composition of the ingot, made of the 

new cast steel, is given in Table 1. 

As can be easily calculated from the data in Table 1 and 

from the given above data, concerning the quotient of 

atomic masses of vanadium and carbon being equal 4.241, 

the content of vanadium being 4.05% required only 

0.95%°C. It results from the dependence: 

950
2414

054

V/Cmassesatomicofratiothe

steelcasttheincontentV
.

.

.
   (2) 

This means that the performed melt contained 1.05% - 

0.95% = 0.10% C more than the content resulted from the 

quotient of atomic masses of V and C. 

It should be also mentioned that VC carbides in ferrous 

alloys have the composition close to V4C3, i.e. that the 

quotient of V/C content in such carbide equals not 4.241 

but: 

665
010123

941504
.

.

.
 

!

!
 (3) 

Therefore the content of 4.05% V in the alloy requires: 

C%710
V/C5.66

V4.05%
.  (4) 

Assuming that carbides of the V4C3 composition  

were in the melt means that the carbon excess was:  

1.05% - 0.71% C = 0.34% C. This excessive carbon was 

bound by other carbide forming elements, the most 

probably by Mo and Cr. These two elements can form 

common M23C6 carbide, which should occur in the 

performed melt next to the MC (M4C3) carbides. Indeed, 

such carbides can be noticed on metallographic micro-

sections of samples taken from the new cast steel ingot. 

Next to the MC carbides of pointed boundaries, present in 

the eutectic composition, additional carbides, which are 

etching by nital into light-pink colour and take grey colour 

in black-white photographs, are seen (Fig. 1) . 

The matrix of the new cast steel should be only of 

martensite. However, inside of crystals etching darker  

(Fig. 1) there are „products of the austenite transforma-

tions”, which, in this work, are conventionally called 

pearlite, while bright zones separating pearlite from 

ledeburite are untransformed austenite  . Along grain 

boundaries the eutectic (ledeburite) built of the MC type 

vanadium carbides of pointed boundaries and of „products 

of the austenite transformation” (pearlite), was formed. 

Thus, it is the transformed ledeburite.  

Large grey precipitates - within the volume of 

untransformed austenite   - are the most probably M23C6

carbides typical for Mo and Cr. The pearlite formation, 

stabilisation of a large austenite volume and additional 

formation of the M23C6 type carbides occur - the most 

1.  Introduction
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