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ABSTRACT

Purpose: Evaluation of different casting methods to produce raw material for thixoforming, 
aiming costs reduction in the production of thixoformable alloys. Reduction of costs may 
stimulate the commercial use of the semisolid processing technology (SSM).

Design/methodology/approach: It is analysed the effect of different casting routes 
in the microstructure features in semisolid A356 alloy, and in its rheological behaviour. 
Different casting procedures were investigated: a) pouring in water cooled Cu mould;  b) 
same as „a)” adding electromagnetic stirring; c) same as „a)” adding mechanical vibration; 
d) same as „b)” with addition of grain refiner; e) same as „c)” with addition of grain refiner. 
Cast materials were reheated to the semisolid sate and the effect of different holding 
times upon the globularization of the primary phase was analysed for each cast structure. 
The semisolid material in each condition was evaluated concerning rheological behaviour. 
Mechanical properties of thixoformed products were evaluated using flexion tests.

Findings: Despite the several methods currently in use to produce raw material for 
thixoforming, this work shows that the best combination of quality of thixoformable 
material/ production cost /process operationality can be achieved using casting in 
permanent mould, under water cooling and mechanical vibration. Resulting cast material 
under this condition presents grain size smaller than 100 µm, ideal for SSM. Lower the 
grain size, lower the primary globule size and higher the roundness of the primary phase 
particle and lower the apparent viscosity of the semisolid. In the best condition achieved, 
apparent viscosity measured was circa 105 Pa.s (similar to the working range for glass), 
leading to a probable homogeneous die filling during thixoforming in high pressure die 
casting machines (HPDC).

Research limitations/implications: Regardless the best microstructure for SSM 
resulting from casting under mechanical vibration, it is still necessary to reach the optimum 
casting condition in terms of vibration in order to improve, even more, refinement of the 
microstructure.

Practical implications: The suggested process is a simple technique to reduce costs 
in the production of raw material for thixoforming. The technology is easily implementable 
in industries.

Originality/value: The development of a simple, original, low cost method to produce 
raw material for SSM technology.
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MATERIALS MANUFACTURING AND PROCESSING

1. Introduction 

Thixoforming is the processing of metallic materials 

within the solidification range. It is a technology with vast 

potential for forming alloys which present appropriate 

rheological properties, replacing traditional processes 

such as forging and die casting. An example of the adva-

ntages of thixoforming upon conventional forming 

processes is the ability to produce near net shape parts 

with mechanical properties sometimes superior to those 

obtained by traditional casting process. In recent decades, 

industrial applications of SSM technology has progressed 

quickly, successfully producing a wide variety of compo-

nents and mechanical parts with high quality, especially 

for the automotive and aerospace industries [1-3]. Among 

the various possibilities of thixoformable materials, Al-Si 

alloys are the most frequently used. Particularly A357 and 

A356 present thermodynamic characteristics favourable 

for thixoforming: at the eutectic temperature, liquid 

fraction is around 50% and the 50% of solid is the 

primary alpha phase. In this condition, the material 

thixoformability depends on the morphology and the size 

of the solid crystals present in the semisolid: small 

dimensions and globular morphology are required. 

Usually, raw material presents non-dendritic structures, 

which must be modified to a globular condition by 

reheating at temperatures above solidus. The control of 

crystals morphology during reheating is a key to the 

success of the thixoforming, once the material expected 

for the operation must be constituted by a suspension of 

globular solid (primary phase) with the smallest size as 

possible, surrounded by the eutectic liquid homo-

geneously dispersed in order to present low apparent 

viscosity and, thus, requiring low forces for thixoforming 

[1,4,5]. The attaining of these conditions depends not only 

on the reheating parameters as temperature (solid/liquid 

fractions), heating rate to the established temperature and 

holding time [4,6], but, in great deal on the morphology 

of the initial microstructure in the raw material. Non-

dendritic structures, with reduced grain size and little or 

none eutectic phase within the grains are desirable; 

therefore, the morphology and dimension of grains in the 

cast material must be controlled.  

Cast structures with non-dendritic, small equiaxial 

grains can be produced using different approaches: 

chemical agents (appropriate choice of alloying elements 

or grain refiners) and physical or thermal agents

(mechanical/electromagnetic stirring, vibration, low pou-

ring temperature, high cooling rate, etc. [1,3,5,7]). These 

agents can act in different ways, simultaneously or not, 

interfering in the nucleation, the grain growth, the size  

of the chilled, columnar and central equiaxial zones in  

the cast structure. The interference in the nucleation

consists in boosting the formation of nucleus extensively 

(creating nucleation sites throughout the liquid volume 

and/or through Ohno’s separation mechanism [8]). The 

interference in the growing consists in promoting the 

modification of the dendritic structure primarily formed to 

a near globular one, by fracture of dendrite arms and/or 

coarsening mechanisms like coalescence and/or Ostwald 

ripening ) [1,9]. 

Production of raw material for thixoforming usually 

involves high cost equipments; the main purpose of this 

work is to investigate low cost procedures to allow wider 

popularization of the SSM processing. The work inve-

stigates the effects of the raw material structure in the 

structure of the semisolid produced by its reheating, and 

of structural aspects in the rheological properties of the 

thixotropic material. It is also evaluated mechanical 

properties of thixoformed material, via flexion tests. As 

this type of test is more appropriate for fragile (ceramics, 

concrete, wood) or hard (cast iron, tool steels) materials, 

for ductile materials only a comparative qualitative analy-

sis can be done. Flexion tests impose in the transversal 

section of the testing body not only tensile but also shear 

and compression stresses simultaneously; during defor-

mation both fragile and ductile phases deform, with the 

ductile alpha involving the fragile eutectic, until the 

material fails when the maximum value of flexion stress 

is reached. Failure starts by fracture of the fragile eutectic 

or in eventual microstructure defects such as inclusions, 

pores or cracks [10]. 

1.  Introduction
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Before and after heat treatment transversal sections of 

the samples were prepared for metallographic observations. 

Polishing with alumina solution down to 0.35 µm and 

etched with HF 1% for B&W microstructure analysis 

through optical microscopy; electrolytic etching using 

Barker electrolyte (HBF4 1.8%) under 40 V, currents 

varying from 0.3 to 0.7 A, aluminium cathode and 

exposure time varying from 4 to 6 min, for colour images 

through polarized light. 

For microstructure characterization, it was used the 

intercepts method to estimate grains and globules sizes (GS 

and GLS, respectively) through images with polarized 

light; and the software ImageJ for the calculus of the 

circularity (roundness) of the globules of the primary 

phase.  

Samples were submitted to thixoforming (monitored 

compression tests at the semisolid temperature of 582°C), 

using a 25 kN press with parallel plates with superficial 

area equivalent to the maximum area occupied by the 

conformed samples. Heating of the sample was provided 

by an induction coil attached to the press; temperature was 

controlled by a thermocouple K type inserted in the sample 

centre and connected to the control system of the coil. 

A weight cell of 30 kN and a LVDT transducer, connected 

to a data acquisition system, were used for monitoring of 

forces and height variations. This system was adjusted at 

the nominal velocity of 125 mm/s and calibrated to impose 

a maximum deformation of 80%.  

According to Kirkwood [3], the Stefan’s equation is 

a good approximation for the calculus of the apparent 

viscosity of a semisolid metal in a simple hot compression 

test using parallel plates. Taking the volume as a constant 

parameter, apparent viscosity is given by:  

 !  !
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where µ is the apparent viscosity (in Pa·s), F the instan-

taneous force (in N), V the volume of the body test (in m3), 

h the instantaneous height of the sample (in m) and dh/dt

the speed of the displacement of the compressive piston  

(in m/s). 
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Another commonly used equation is:  
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where -  is the engineering tension (Pa), h0 is the initial 

height of the sample (in m) and e is the dimensionless 

sample deformation. 

Rectangular samples of 45 x 5 x 2 mm were machined 

from the thixoformed material and used in flexion tests to 

evaluate mechanical behaviour. Tests were performed 

using a MTS machine (capacity of 100 kN), with weight 

cell of 1.5 kN; testing conditions were: three bending 

points (diameter of the rollers 2.5 mm), distance between 

the supports 39 mm, velocity 3 mm\min. The machine was 

programmed to interrupt the test in the case of 20% 

reduction in the maximum force applied.  

3. Results

Microstructures of samples in as-cast condition, for all 

casting procedures tested, and after heating treatment at 

582°C (circa 40% solid fraction) to obtain the semisolid, 

thixotropic material, were observed. Figure 4 shows B&W 

photos of microstructures from the intermediary region 

between the border and the centre of the cast ingot, and 

corresponding microstructure after reheating and holding at 

the heating temperature for different times. Special etching 

and polarized light was used to get colourful photos of the 

same microstructures, as shown in Figure 5. More precise 

characterization of microstructures features like grains and 

globules can be provided by colour metalography.  

Regarding the as-cast condition, it can be observed that 

all the casting methods used to promote grain refining seem 

to be efficient.  

Structures present primary phase as fine, fragmented 

dendrites, in all samples. The casting conditions employed 

were able to activate different mechanisms of structure 

refining: chilling effect due to high heat exchange by the Cu 

cooled mould associated with low pouring temperature was 

effective to stimulate successive nucleations predict by 

Ohno's separation theory [1,3,6,7] in case of condition "C"; 

crystal multiplication proposed by Tiller and Flemings [1,6] 

is probably mandatory in the dendritic fragmentation when 

mechanical or electromagnetic stirring is promoted in the 

solidification front (in "C/EMS" and "C/MV"); combination 

of these mechanisms with increase of heterogeneous 

nucleation rate by grain refiners are the responsible for the 

fine structure observed in the material cast according to 

conditions "C/GR/EMS" and "C/GR/MV".  

3.  Results
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In Figure 4 it can be observed that typical distance 

between two neighbour solid particles is in the order of 

30µm for all conditions. Using polarized light (Fig. 5) it is 

possible to observe that several apparently isolated solid 

particles present same crystal orientation, therefore belon-

ging to the same grain. In this case, grains can contain 

several interconnected globules originated from coarsening 

mechanisms of the original dendritic structure. The com-

plexity of the 3D interconnected structure can be described 

by the relationship GS/GLS where GS = grain size and 

GLS = globules size); increasing values of GS/GLS mean 

the presence of 3D arrays of interconnected small solid 

particles, while values close to unity means bigger and 

more isolated solid particles. Another important structure 

parameter, as far as thixoforming is concerned, is the 

roundness of the globular solid, measured as a relation 

between the measured perimeter of the particle/ideal 

perimeter of circle with same area. Quantitative analysis of 

the microstructures is presented in Table 3.  

Results show high values of GS/GLS for all structures 

in the as-cast condition. For all casting methods tested, 

resulting structures are formed by groups of fragmented 

dendrites constituting grains. The highest value of GS/GLS 

is obtained for the cast condition "C" (5.85 ± 1.47) 

followed by conditions "C/EMS" (4.45 ± 1.41), "C/MV" 

(2.67 ± 1.15) e "C/GR/EMS" (2.46 ± 1.21). These results 

indicate that the rapid cooling provided by the chilled Cu 

mould + low pouring temperature ("C") is less efficient in 

promoting refinement than using EM or MV stirring. Best 

results (more refined and less complex structures) were 

produced by associating electromagnetic stirring and 

addition of grain refiner. Unexpectedly, the worst value 

was obtained for the condition "C/GR/VR" (4.06 ± 1.35); 

this result deserves further investigation to be clarified. 

Stability of the semisolid state, both the liquid fraction 

present and the morphology of the solid phase, is 

mandatory during thixoforming operation. Liquid fraction 

depends on tight control of temperature, which must be 

kept constant, otherwise changes in liquid/solid fractions 

can compromise the process stability. On the other hand, if 

the morphology of the solid in the semisolid material 

greatly varies during thixoforming (such as grain growth, 

agglomeration of particles, etc.), it can be expected high 

variation on the viscosity, leading to a less controllable 

process.  

From the data presented in Table 3 it is possible to build 

graphics relating changes in the semisolid structure with 

holding time at the thixoforming temperature of 582°C, for 

the A356 alloy investigated, as shown in Figure 6. 

It can be observed that grain size in semisolid state 

decreases with increasing holding time up to 120 s; same

Table 3.  

Quantitative analysis of A356 microstructures for all 

conditions tested 

Condition
GSa

(µm) 

GLSb

(µm) Roundness GS/GLS 

C

As cast 158 ± 37 27 ± 8 – 5.85 ± 1.47

0 s 131 ± 26 103 ± 54 0.44 ± 0.16 1.27 ± 0.08

30 s 145 ± 41 115 ± 58 0.45 ± 0.16 1.26 ± 0.21

60 s 149 ± 39 123 ± 62 0.46 ± 0.16 1.21 ± 0.18

90 s 109 ± 19 97 ± 53 0.55 ± 0.11 1.12 ± 0.11

120 s 111 ± 26 98 ± 60 0.56 ± 0.12 1.13 ± 0.17

210 s 126 ± 20 109 ± 47 0.47 ± 0.14 1.15 ± 0.39

C
/E

M
S

 

As cast 169 ± 28 38 ± 13 – 4.45 ± 1.41

0 s 156 ± 39 113 ± 67 0.37 ± 0.14 1.38 ± 0.22

30 s 146 ± 37 105 ± 59 0.52 ± 0.12 1.39 ± 0.21

60 s 122 ± 31 98 ± 53 0.50 ± 0.13 1.24 ± 0.18

90 s 127 ± 25 99 ± 44 0.51 ± 0.12 1.28 ± 0.15

120 s 123 ± 25 108 ± 53 0.54 ± 0.12 1.14 ± 0.12

210 s 170 ± 43 118 ± 58 0.51 ± 0.11 1.44 ± 0.20

C
/M

V
 

As cast 96 ± 16 36 ± 12 – 2.67 ± 1.15

0 s 117 ± 23 94 ± 39 0.45 ± 0.14 1.24 ± 0.12

30 s 112 ± 26 103 ± 54 0.45 ± 0.14 1.07 ± 0.14

60 s 107 ± 22 97 ± 55 0.59 ± 0.11 1.10 ± 0.13

90 s 109 ± 25 93 ± 46 0.52 ± 0.11 1.17 ± 0.14

120 s 92 ± 12 91 ± 47 0.54 ± 0.12 1.01 ± 0.07

210 s 117 ± 21 112 ± 53 0.48 ± 0.12 1.05 ± 0.09

C
/G

R
/E

M
S

 

As cast 96 ± 16 39 ± 11 – 2.46 ± 1.21

0 s 107 ± 17 93 ± 50 0.51 ± 0.15 1.15 ± 0.10

30 s 108 ± 33 95 ± 44 0.59 ± 0.15 1.14 ± 0.19

60 s 93 ± 12 84 ± 44 0.60 ± 0.13 1.11 ± 0.08

90 s 102 ± 16 97 ± 45 0.59 ± 0.12 1.05 ± 0.08

120 s 110 ± 28 97 ± 45 0.58 ± 0.12 1.13 ± 0.16

210 s 123 ± 21 112 ± 54 0.60 ± 0.13 1.10 ± 0.09

C
/G

R
/M

V
 

As cast 138 ± 20 34 ± 11 – 4.06 ± 1.35

0 s 120 ± 24 92 ± 32 0.42 ± 0.13 1.30 ± 0.10

30 s 127 ± 32 100 ± 55 0.57 ± 0.11 1.27 ± 0.19

60 s 124 ± 15 101 ± 51 0.54 ± 0.12 1.22 ± 0.08

90 s 127 ± 24 97 ± 50 0.56 ± 0.13 1.31 ± 0.13

120 s 117 ± 14 106 ± 54 0.58 ± 0.11 1.10 ± 0.07

210 s 131 ± 24 110 ± 50 0.59 ± 0.13 1.19 ± 0.10

OBS: a Grain Size; b Globule Size. In the cast samples GLS 

is the interdendritic arm spacing.  
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Table 4.  

Rheological behaviour of semisolid A356 at 582°C and 

mechanical properties of thixoformed parts 

Condition 
Max µap

a

(MPa s) 

Max  b

(MPa) 

 F
c

(MPa) 

Elongationd

(%) 

C

0 s 1.36 6.18 353 5.1 

30 s 1.22 5.52 340 4.6 

60 s 0.93 5.17 329 5.3 

90 s 0.86 7.05 320 6.9 

120 s 0.75 6.20 325 5.0 

210 s 0.80 5.25 341 6.8 

C
/E

M
S

 

0 s 1.32 6.39 332 5.9 

30 s 1.10 4.64 331 4.6 

60 s 0.82 3.42 328 3.9 

90 s 0.99 4.47 325 4.2 

120 s 0.71 3.02 323 4.6 

210 s 1.24 5.40 336 4.5 

C
/M

V
 

0 s 0.83 4.65 349 5.6 

30 s 0.50 3.19 332 5.8 

60 s 0.47 3.32 342 4.7 

90 s 0.44 3.08 341 4.4 

120 s 0.31 1.04 348 5.8 

210 s 0.71 4.38 344 6.1 

C
/G

R
/E

M
S

 

0 s 1.15 4.95 355 5.9 

30 s 1.00 3.22 339 3.6 

60 s 0.57 2.39 336 4.5 

90 s 0.56 2.34 318 5.4 

120 s 0.91 3.79 324 4.1 

210 s 0.85 3.11 332 4.8 

C
/G

R
/M

V
 

0 s 1.34 5.07 356 7.2 

30 s 0.99 3.44 348 4.5 

60 s 0.91 4.12 353 4.7 

90 s 0.64 2.48 344 7.0 

120 s 0.57 1.63 340 5.1 

210 s 0.87 3.48 347 5.8 

OBS: aMaximum apparent viscosity; bMaximum stress for 

80% deformation in hot compression tests; cMaximum 

flexion tension in thixoformed parts; dmaximum elongation 

of thixoformed parts. 

Excessive holding such as 210 s promotes increase in 

maximum µap due to coalescence of particles and the 

possibility of 3D skeleton build up [15]. Therefore it is 

possible to define an optimum time interval for pro-

cessing: it is recommend to proceed the thixoforming after 

holding times ranging from 30 to 120 s. Results show that 

the best rheological behaviour in this optimum holding 

time range is presented by the semisolid produced from 

raw material cast in the "C/MV" condition (average max 

viscosity of 0.43 MPa·s). It is important to point out that 

this result is better when compared to results obtained for 

semisolid produced from raw material cast using the more 

expensive route "C/GR/EMS" (in this case, average max 

viscosity of 0.76 MPa·s). 

After destruction of groups of interconnected solid 

globules at the higher initial shear rate, the viscosity of the 

semisolid drops to very low values, such as 105 down to 

103 Pa·s (0.1 down to 0.001 MPa·s), the same rheological 

behaviour of toothpastes or glass working range [1], which 

are highly mouldable materials. Therefore, the ultimate 

objective of the thixoforming processing is achieved for 

the structures produced under all conditions investigated.  

Concerning stress x strain curves, similar general 

behaviour can be observed for all semisolid conditions: 

before breaking of globules arrangements, deformation 

requires increase in stress; after maximum stress is reached, 

more free solid particles in liquid environment can easily 

move and deformation of the material occurs at very low 

stress. It can be observed that the maximum stress required 

for 80% deformation is less than 5.0 MPa for the "C/MV" 

condition, i.e., circa of 5% of the stress commonly required 

in forging the alloy A356 in the solid state. 

Table 4 also shows results of flexion tests. Although 

this particular test in indicated for fragile materials, it was 

used here only to evaluate comparatively the mechanical 

behavior of thixoformed parts produced from raw material 

cast in the different conditions investigated. It can be 

observed that the maximum flexion tension achieved ( F), 

i.e., the tension at the rupture, is much higher than the 

usual Ultimate Tensile Strain for the alloy A356 (circa 

240 MPa [13]). General results show that the final 

mechanical properties are similar for all thixoformed 

samples, produced from different raw materials. Therefore, 

as far as mechanical properties is concerned, structure 

variations in the semisolid produced from the different 

raw materials are not so sensible. Maximum flexion  

stress ( F) varies from 356 to 318 MPa, while elongation  

varies from 7.2 to 3.9%. Best results are obtained for the 

"C/GR/MV" sample thixoformed at 582oC without holding 

time.  
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4. Conclusions 

According to the premise that the initial microstructure 

of a material for thixoforming must be non-dendritic with 

reduced grain size, so that the viscosity of the reheated 

semisolid is as low as possible, tests were made using 

different casting processes in order to control the micro-

structure of raw material for thixoforming of the A356 

alloy. Results show that the best production method for 

thixoformable material is casting in water cooled mould 

submitted to mechanical vibration during solidification. 

Resulted cast structure presents small grains with high 

circularity and reduced relation grain size/globule size; all 

these factors contributing to a low apparent viscosity and, 

as consequence, in low forces for thixoforming.  

Since thixoforming of A356 alloy is mainly employed 

for structural parts, such as gear box houses and others, the 

mechanical properties achieved are compatible with the 

required properties of the potential application. Therefore, 

casting under mechanical vibration can be a simple and low 

cost alternative to produce raw material for thixoforming of 

A356 alloy.  
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