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ABSTRACT

Purpose: The aim of this work is to present the main initial results on the development of 
the niobium plasma carburizing process.

Design/methodology/approach: The development of a new pulsed direct current power 
supply plasma assisted thermo-chemical treatment process for niobium. 

Findings: Niobium plasma carburizing can be successfully carried out, and niobium carbide 
phases can be obtained in the treated surface.

Research limitations/implications: The risk of arc formation during the surface 
treatment can be overcome by optimizing the discharge geometry.

Practical implications: The highly reactive plasma atmosphere is an advantage regarding 
the other conventional treatment processes.

Originality/value: It is a new process development, and in this moment it is being 
considered to be patented in Brazil by the authors.
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MATERIALS

1. Introduction 

DC plasma assisted carburizing is easily obtained 

by applying a potential difference between electrodes placed 

in a gas medium under low pressure, typically formed by an  

Ar + H2 + CH4 containing gas mixture. In this case, free 

electrons and positive ions present in the gas mixture are 

accelerated by the electric field, and collisions with neutral 

gas species occur, leading the gas to be ionized. The gas 

ionization originates a bright-aspect discharge which 

characterizes the formation of plasma [1-6], resulting 

in a classical example of cold plasma application. In DC 

materials processing, plasma carburizing [6-9] is very similar 

to the very well established plasma assisted nitriding [10,11], 

and sintering [12,13], processes. Argon (neutral gas) is used 

for the purpose of sample heating. Hydrogen (important 

reducing gas) plays important role on the interaction with 

niobium oxide layer present in the part surface.  

1.  Introduction
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surface treatment process, allied to aspects of the carbu-

rized layer formation kinetics and the phases formed in the 

niobium treated surfaces. 

2. Experimental procedures

Niobium samples were cut by wire electrical discharge 

machining (WEDM) in dimensions of 10 x 10 x 4 mm3

from 98.9% purity and 90% reduction cold-rolled niobium 

bar from CBMM - Companhia Brasileira de Metalurgia 

e Mineração. Annealing treatment of the cold-worked 

niobium samples was carried out in vacuum furnace at  

1.33 Pa (10-2 Torr) pressure, in the temperature of 1000°C, 

for a time of 60 min. The samples were ground using 220, 

320, 400, 600 and 1200 SiC sand-paper. Aiming to obtain 

the finishing of the testing surfaces, samples were initially 

polished using 1.0 µm diamond paste, and finally polished 

with 0.05  m Al2O3 solution. 

Plasma carburizing was performed at 1100°C, for 

treatment times of 10, 90, and 200 minutes, using a gas 

mixture 0.99 (80% Ar + 20% H2) + 0.01 CH4, under a flow 

of 300 sccm, pressure of 1200 Pa (9 Torr). Treatments were 

carried out using 4.16 kHz square-wave pulsed DC power 

supply, using an average peak voltage of 680 V, and 

a pulse period of 240  s. The heating of the sample to the 

treatment temperature was achieved by plasma species 

bombardment only. The sample temperature was controlled 

by varying the duty cycle (or the switched-on time of the 

pulse, ton), and it was measured by means of a chromel-

alumel thermocouple (type K, and 1.5 mm diameter), 

which was inserted to a depth of 8 mm inside the sample. 

The sample holder was machined from a steel bar 

presenting composition similar to the AISI 1008 steel. 

Before the carburizing stage, sample was cleaned using H2

glow discharge at 300°C, for 15 min, and pressure of  

400 Pa (3 Torr). After this step, the gas pressure was 

adjusted to the specified value of 1200 Pa (9 Torr), and the 

sample was heated up to the carburizing temperature at  

a heating rate on the order of 0.45°Cs-1.

The 10 x 10 mm2 sample surfaces were characterized 

by SEM, XRD, nanoindentation, and high precision 3D 

profile analysis laser interferometry techniques. The 2D 

profiles measured at the studied surfaces were performed in 

accordance with ISO 25178, using a Talysurf CCI - Lite 

Non-contact 3D Profiler, from Taylor Hobson. In this case, 

measurements were performed for all the studied surfaces, 

using a area of 1.5 x 1.5 mm2, with a resolution of  

1632 µm, 1633 µm, and 0.01 nm, for X, Y, and Z axis, 

respectively. The 3D to 2D roughness parameters conve-

rsion was carried out using the diagonal line of the 

measured 1.5 x 1.5 mm2 square area, in accordance with 

the ISO 4287 standard.  

Nanoindenter XP-MTS System was used to determine 

the hardness and to perform scratch testing of the studied 

surfaces. The hardness versus penetration depth curves 

were obtained on the average of 25 (5 x 5 matrix) 

indentations with 100 µm spacing, using a Berkovich type 

indenter, and 12 charge-discharge cycles, for loads up to 

400 mN (40 gf) and 10 s loading time. The scratch tests 

were performed using loadings from 0 to 400 mN (0 to  

40 gf), scratch length of 600 µm and indenter translation 

velocity of 10 µms-1. Topography profiles of the studied 

surfaces were also obtained, by making the indenter tip to 

run along about 700  m length. In this case, penetration 

profiles for the scratches during loading and after 

unloading were also determined aiming to characterize the 

penetration residual morphology, and thus to confront the 

elastic and plastic behavior of the carburized surfaces in 

relation to those of the untreated niobium.  

The identification of the phases formed at the studied 

surfaces was carried out by the X-Ray Diffraction (XRD) 

technique, using a Shimadzu XRD 7000 X-ray diffracto-

meter, with CuK  radiation, at Bragg-Brentano configu-

ration, for 2! angles ranging from 10 to 120º, and scanning 

speed of 1ºs-1. On the other hand, Scanning Electron 

Microscopy (SEM) analysis was performed aiming to 

determine the surface morphology of the studied samples 

and the characteristics of the cavitation eroded surfaces, 

using TESCAN-VEGA3-LMU equipment. 

3. Results and discussion 

3.1. Challenges on the development of the 

niobium plasma carburizing process 

In Fig. 2 it is shown, in brief, the main results achieved 

on the development of the carburizing process of niobium 

samples. It indicates the evolution of the temperature (T), 

switched-on time of the pulse (ton) or duty cycle, and 

current (I) as a function of the treatment time (thermal 

cycle) for the niobium samples carburized at 200 min. The 

experiments comprised the use of different cathode 

assemblages, using distinct types of sample holders and 

materials. In the present work are emphasized the results 

achieved by using a typical assemblage for which the 

sample was placed on an AISI 1008 steel holder, being that 

special attention was given for the results obtained for the 

sample processed at the longer treatment time. The main 

challenge on the development of the niobium plasma 

2.  Experimental procedures 

3.  Results and discussion

3.1. Challenges on the development of the 
 niobium plasma carburizing process



8 8

S.F. Brunatto, K.S. Velez

Archives of Materials Science and Engineering 

carburizing process occurred at the heating stage from  

300 to 1100°C temperature, since all the carried out 

treatments presented successive series of arcs (indicated by 

the red lines falling to zero current values), during their 

heating stage. The occurrence of arcs was attributed to the 

discharge geometry aspects as well as the cleanness of the 

surfaces under plasma species bombardment and the 

insulating parts. It is worth to be mentioned that for the 

niobium sample carburized at 200 min, the thermal cycle 

was interrupted after the last arc (at about 80 min treatment 

time). After the sample cooling up to the room temperature, 

the discharge chamber was opened, and the settings of the 

cathode assemblage and the discharge geometry were 

successfully revised, making possible to restart the thermal 

cycle up to complete 200 min, at the carburizing 

temperature. 

Fig. 2. Evolution of the temperature (T), switched-on time 

of the pulse (ton), and current (I) as functions of the 

treatment time for niobium samples carburized at 200 min 

Such procedure was adequate enough to provide 

treatment with no additional arc occurrence. This aspect is 

to be emphasized, since the change of the discharge regime 

from the abnormal to the arc one causes interruption of the 

plasma carburizing treatment. In addition, arcs can cause 

surface defects on the treated sample surface, and lead the 

power supply to burn, if high-current protection is not 

available in the used power system.  

Another significant aspect to be considered on the 

development of the present process deals with the material 

used to machine the sample support, in this case, AISI 1008 

steel. For a long-term treatment (it is the case of the sample 

carburized at 200 min) under the influence of the 

carburizing gas mixture, it is suggested that the plasma 

species bombardment, for the cylindrical geometry of the 

holder, was able to heat it above the eutectic temperature of 

the binary system Fe-C (1148°C), and able to enrich its 

surface for contents above 2.06 wt.% C, which represents 

the maximum C solubility into the austenite, keeping in 

mind that the holder material (a typical low-carbon steel) 

was also subjected to the carburizing treatment, due to the 

impingent plasma species. Under such conditions, partial 

melting could occur at the surface of the steel holder. This 

assumption is confirmed by the results presented in Fig. 3.  

Fig. 3. a) Typical view of the cathode structure assemblage 

just before performing the carburizing treatment; b), and 

c) views of the cathode structure just after performing 

200 min treatment, and removing the niobium sample from 

the cathode, respectively 

Figure 3a shows a typical view of the cathode structure 

assemblage just before performing the carburizing trea-

tment. It can be seen, in details, the AISI 1008 steel holder, 

and the polished niobium sample to be treated. It is also 

shown in Fig. 3b the cathode structure just after performing 

the 200 min carburizing treatment, and the new aspect of 

both the sample holder and the thermocouple after 

removing the carburized Nb sample (Fig. 3c). The new 

geometries obtained as for the steel holder as for the 

thermocouple (noting that the stainless steel coating of the 

thermocouple was also melted, after exposing it to the 

plasma species bombardment), after the long-term 

carburizing treatment, which are typically expected for 

parts presenting partial melting, clearly prove the above-

mentioned assumption. It is also to be noted in Fig. 2 that 

the evolution of the switched-on time of the pulse (ton), 

which is roughly constant for the range of treatment time 

90-190 min, presents a sharp decrease on the ton values 

after 190 min. The authors believe that the partial melting 

of the steel holder was initiated at the 190 min treatment 

time. This is based on the fact that in the presence of partial 

liquid phase, the emission of secondary electrons from the 

partially melted cathode, and thus the ionization of the 

plasma next to the niobium sample surrounding were also 

increased. This aspect would try for to explain why the 
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4. Conclusions 

Initial results on the niobium plasma carburizing 

process development were presented here. Plasma 

carburizing of niobium samples was successfully carried 

out, leading to the formation of niobium carbide in 

niobium substrates. The main challenges related to the risk 

of arc formation and temperature control during the 

surface treatment process, allied to aspects of the 

carburized layer formation kinetics and the phases formed 

in the niobium treated surfaces were also presented. The 

niobium carbide phases attained at the treated surfaces can 

lead to hard surfaces presenting scratches with high elastic 

recovering degree. 
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