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ABSTRACT

Purpose: The aim of this review is recapitulating the FMR/EPR study of localized magnetic 
centers and clusters in co modified nanocomposites titanium dioxide by nitrogen and group 
of transitions magnetic metals.

Design/methodology/approach: In some cases, modified in this way, titanium dioxides 
improve their photocatalytic properties where localized magnetic moments and spin-
correlated systems play a very important role in their physical properties that are important 
in their applications.

Findings: The modified titanium dioxides without introducing ions from the group of 
transition metals may have EPR spectra of free radicals and titanium ions at a lower 
oxidation state, which are responsible for the increase in photocatalytic activity. Modifying 
the additional magnetic ions from the group of transition metals there are additional very 
intense FMR spectra which are strongly temperature dependent. Static measurements (DC), 
magnetization as a function of temperature indicate the formation of magnetic orderings, 
superparamagnetic and paramagnetic state.

Research limitations/implications: Modified nano-titanium dioxide composite prognosis 
applications in catalysis, photovoltaic or in spintronics.

Originality/value: A large amount of work appears annually associated with the modified 
titanium dioxide by the various elements and especially from the group of transition metals 
and noble gases. Against this background, very little work appears on their dynamic and 
static magnetic properties that may impact on their ability applications.

Keywords: Titanium dioxide; Nanocomposites; Localized magnetic centers; Magnetic 
clusters

Reference to this paper should be given in the following way: 

N. Guskos, Localized centers and correlated magnetic spin systems in titanium oxides 
nanocomposites, Archives of Materials Science and Engineering 74/1 (2015) 23-31.
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1. Introduction

At the turn of the century 70s and 80s there was a huge 

amount of work in research using EPR method, both 

theoretical and experimental associated with a low 

concentration of localized magnetic centers in non-

magnetic single crystals. Particular attention for their 

potential in the application of laser. Hence, attention was of 

great importance on the impact on the energy levels of 

magnetic ions doped. Also a lot of work appeared with 

magnetic resonance systems by examining correlated spin 

in single crystals. After mastering the technology of 

magnetic nanoparticles at the turn of the century began to 

appear a lot of work associated with putting them in low 

concentrations to polymers and nanocomposites. It turned 

out that substantially improved physical properties, which 

is essential in the formation of a new generation of 

functional materials. Particularly important are the studies 

magnetic dynamic and static interaction. In previous papers 

is shown works with dynamic magnetic investigation on 

polymers and nanocomposites of titanium (TiC and TiN) 

using EPR/FMR (electron paramagnetic resonance 

/ferromagnetic resonance) method [1,2]. As shown in 

Materials Engineering is a useful method to study physical 

processes at the atomic level. For thirty years intensively 

studied titanium dioxide is due to its catalytic and 

photovoltaic properties. After modification of noble gases 

and metals of transition group exhibit improved catalytic 

properties e.g. [3-14]. Recently magnetic ordering was 

observed at room temperature in the modified titanium 

dioxide [15-23]. Being a semiconductor it gives you a new 

opportunity to use in spintronics. One of the most effective 

methods of research centers located magnetic and 

correlated spin systems is the use of EPR/FMR (electron 

paramagnetic resonance/ferromagnetic resonance) [6,14, 

24-47]. The temperature dependence of the EPR/FMR 

spectra have shown that the dynamical processes play 

important role on the interactions between localized 

magnetic centers and correlated spin system with their 

surroundings. 

The aim of this work is to present the current state of 

knowledge about magnetic interactions in titanium dioxide 

and its modification with noble gases and ions transition 

group. I would like to point out that thousands of works 

appears annually modified titanium dioxides. Magnetic 

centers and modification of titanium dioxides significantly 

alter their physical properties that significantly affect their 

application possibilities. Therefore they must organize their 

electronic properties associated with electrical conductivity 

and magnetism. 

2. Findings review and interpretation  

Preparation and characterization of the results presented 

nanocomposites tested titanium dioxides described in the 

previous works [4,6,14,23,42-47]. 

The electron paramagnetic resonance/ferromagnetic 

resonance (EPR/FMR) absorption signal derivative 

measurements are carried out by a conventional X-band 

(f = 9.43 GHz) Bruker E 500 spectrometer with 100 kHz 

magnetic field modulation, with the sample placed at the 

centre of the TE102 resonance cavity-at the local 

microwave magnetic component maximum and in the 

electric component nodal plane. Sample magnetization 

by a steady magnetic field of 1.6 T prior to FMR 

measurements is secured for saturation of any existing 

domain structure. Ambient temperature lowering is, 

before reregistering the FMR spectrum, regulated within 

an Oxford Instrument liquid helium flow cryostat for 

any region of the whole available range from RT down 

to 4.2 K.  

Modified by noble gases, iron group metals or rare 

earth ions nanocomposites titanium dioxide changes 

significant their physico/chemical properties, which 

further increases their ability applications e.g. in cata-

lysis, photovoltaics, in buildings materials, in water 

purification, in sunscreens or in spintronics. As pointed 

out above in among thousands of works, occur every 

year, relatively little work is the study of dynamic and 

static associated with magnetism and electric condu-

ctivity. Localized magnetic centers and magnetic agglo-

merates play an important role in their modifications of 

physical properties. 

The nanocomposite modified titanium dioxide by 

noble gas atoms localized magnetic centers mainly 

derived from free radicals and complexes of lower 

oxidation level of titanium ions. They have a lot of work 

for modified titanium oxide at different temperatures of 

thermal treatment [25,26,38,42-44,47]. Generally, the 

titanium dioxide obtained in processing temperatures 

below 700°C is composed of rutile phase and anastase 

for example the processing temperature of 300°C are  

a 93% Anastase and 7% rutile. Sizes nanocrystallites 

were 12-18 nm. 

Figure 1 shows the EPR spectra for the titanium dioxide 

modified with nitrogen. The resonant line is centered at  

g = 2.0033-8(1) with linewidth  Hpp = 7-10(1) G and comes 

from free radicals. During the processing temperature 

below 400°C, titanium dioxide is a spectrum dominated 

by free radicals (Fig. 1a and b). Fitting of resonance line 

at low temperatures are made by Lorentz function. At

high temperatures if the electron conductivity signi-

ficantly increased by Dysson function should be fitting. 

2.  Findings review and interpretation1.  Introduction
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Integrated intensity strongly depends on the temperature in 

the processing. Integrated intensity is related to the amount 

of free radicals which, in the photocatalytic process play an 

important role. You can increase the amount of these 

magnetic centers by irradiation with ultraviolet light in the 

course of EPR measurements at lower temperatures. All 

parameters of resonance line strongly depend on the 

temperature [43]. This is due to the complexity of localized 

magnetic moments in sublattice with their surroundings. At 

high temperatures there is still additional impact associated 

with the conduction electrons. Nanocomposites prepared at 

temperatures of 500°C-600°C showed additional spectrum 

EPR from trivalent titanium ions complexes (Fig. 1c and 1d). 

At higher processing temperatures there is only a very 

intensive EPR spectrum derived from the complexes of 

trivalent titanium ions and resonance lines are centered at  

geff = 1.948(1), geff = 1.959(3) and geff = 1.949(3) (Fig. 1e) 

[4]. The intensity of the resonance lines derived from the 

complexes of the trivalent titanium ions decreases rapidly 

with increasing temperature than that of free radicals. This is 

related to the relaxation process, i.e., the transfer of 

excitation energy to the spin system and the lattice. Hence, 

also to observe that the EPR spectrum of trivalent titanium 

ions often must go down to lower temperatures. The best 

performance was obtained for photocatalytic nanocomposite 

modified titanium dioxide EPR spectra occurred at 

appropriate concentrations of free radicals and ions of 

titanium at a lower oxidation state i.e. treated at temperatures 

of 500-600°C. The fact is that when the heat treatment of 

titanium dioxide nanocomposites can be prepared at higher 

temperatures than more than an order of magnitude number 

of defects associated with titanium ions could be increasing 

which adversely affect the photocatalytic performance. On 

the other hand, in some cases may enhance the properties of 

electrical conductivity. 

Figures 2-4 show EPR spectra/FMR for modified 

nanocomposites nM, N-TO2 (M=Fe, Ni and Co; n=1%, 

5% and 10%), at different temperatures. From the Figs 2-

4 shows that at high temperatures we have a very intense 

and broad resonances lines shifted toward lower 

magnetic fields. They are characteristic of nano-sizes 

magnetic agglomerates [1,2]. The intensity of these lines 

and the width depends strongly on the content of the 

output magnetic metal. A good fit is achieved by using  

a function Callen (Eq. 1) [48,49]. 

Localized magnetic centers usually dominates at low 

temperature spin-spin relaxation and higher spin-lattice. In 

the case of nano-size magnetic agglomerates at high 

temperatures both of the relaxation processes may coexist. In 

the case of nanocomposites titanium dioxide resonances are 

wider and shifted in the magnetic field than nickel. It shows 

that we strongly correlated spin systems and similar behavior 

is observed when the polymer nanocomposites fills the low 

concentration of magnetic nanoparticles [1,2,50,51]. 

Additionally, the lower temperatures observed EPR 

spectrum derived from trivalent ion complexes of titanium 

with different concentrations (Figs 2-4). At least amount 

introduced initially of metallic ions (n = 1%) is the largest 

concentration of trivalent titanium ions (by more than the 

order) for nanocomposites of titanium dioxide with Ni and 

Co. For other nanocomposites is reflected in very low 

temperatures in small quantities. The nanocomposite 5Fe, 

N-TiO2 integral intensity at room temperature is the highest 

of samples n = 1% than n = 10%. This is due to the skin 

effect which is associated with the conduction electrons 

(the highest electrical conductivity). The presence of 

trivalent titanium ions, electron conductivity together with 

free radicals can be responsible for the improvement of the 

photocatalytic properties under visible light of the co-

modified (Fe,N)-TiO2 nanocomposite [45]. In the case of 

nanocomposites nickel titanium dioxide best performance 

was obtained for n = 5% as for iron [47]. It seems that to 

large concentration of nickel (more than 5 wt% in our case) 

hinders obtaining a good photocatalyst. The FMR spectra 

of co-modified nCo,N-TiO2 nanocomposites have shown 

the occurrence of strongly coupled spin systems of two 

types. Relaxation processes and magnetic anisotropies 

quite significantly depended on cobalt concentration. The 

increase in concentration of correlated systems differently 

affects the resonance fields and dipole-dipole interactions. 

It has been suggested that the presence of two magnetic 

sublattices adversely affect the not good photocatalytic 

performance [46].
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where: 

H0 - the true resonance field,  

 B - the true linewidth connected with relaxation of the Landau-Lifshitz type (may be identified with the longitudinal (spin-

lattice) relaxation), 

!B - a true linewidth connected with relaxation of the Bloch-Bloembergen type (the transverse (spin-spin) relaxation). 
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Fig. 1. The EPR spectra of nanocrystalline TiO2 at different thermal annealing: a) 400°C at T = 4 K, b) 400°C at T = 20 K,  

c) 500°C at 4 K, d) 500°C at 20 K and e) 850°C at 4 K and 20 K 
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Fig. 2. The FMR spectra of modified nanocomposites 

nFe,N-TiO2 with n = 1%, 5% and 10% 
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Fig. 3. The FMR spectra of modified nanocomposites 

nNi,N-TiO2 with n = 1%, 5% and 10% 
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Fig. 4. The FMR spectra of modified nanocomposites 

nCo,N- TiO2 with n = 1%, 5% and 10%

3. Conclusions

From these studies it shows that the photocatalytic 

processes significantly affect magnetic interactions by both 

the localized magnetic centers as the correlated spin 

systems. In the case of modification of titanium dioxide 

nanocomposites by noble gases is an important respective 

proportions located magnetic centers produced by free 

radicals and ions of titanium in a lower oxidation state in 

the photocatalytic process. This is achieved by suitable 

thermal treatment. When modifying titanium dioxide 

nanocomposites by noble gases and metals from transition 

group than they are an important of right amount magnetic 

metals and type. For iron is the highest but in the case of 

cobalt is the worst. This situations can cause formation of 

more complex magnetic structure by cobalt. In the case of 

nanocomposite 5Fe,N-TiO2 where he achieved the best 

performance photocatalytic it could affect the magnetic 

interaction between the amount of iron, free radicals, 

defects associated with trivalent titanium ions and increase 

electrical conductivity.

Additional information

Selected issues related to this paper are planned to be 

presented at the 22nd Winter International Scientific 

Conference on Achievements in Mechanical and Materials 

Engineering Winter-AMME’2015 in the framework of the 

Bidisciplinary Occasional Scientific Session BOSS'2015 

celebrating the 10th anniversary of the foundation of the 

Association of Computational Materials Science and 

Surface Engineering and the World Academy of Materials 

and Manufacturing Engineering and of the foundation of 

the Worldwide Journal of Achievements in Materials and 

Manufacturing Engineering. 
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