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ABSTRACT

Purpose: Lithium-sulfur (Li-S) batteries are considered as one of the most promising 
next-generation rechargeable batteries for electrical energy storage because of their high 
theoretical specific energy of ~ 2500 Wh kg-1, low production cost, and high abundance 
of sulfur. However, the high charge-storage capacity of sulfur cannot be effectively utilized 
due to the insulating nature of the active material and the easy migration of polysulfide 
intermediates from the cathode to the anode. In this research article, we describe a concise 
summary of two successful methods for solving the scientific problems and improving the 
Li-S cell performances.

Design/methodology/approach: Successful strategies in addressing the scientific and 
engineering issues of Li-S cells can be divided into two major categories: (i) sulfur-based 
nanocomposites that improve the Li-S cell performance based on the cathode active 
material and (ii) cell configuration modifications that enhance the Li-S cell performance by 
adopting the materials nature of sulfur.

Findings: Current technologies including nanocomposite development and cell configuration 
design have greatly ameliorated the overall electrochemical performance of Li-S batteries by 
improving the electrochemical utilization of sulfur and the retention rate of polysulfides.

Research limitations/implications: The overcome the challenges of Li-S batteries, 
a fair balance has to be taken between (i) sulfur loading/content and cell performances, (ii) 
amount of active material and porosity of the matrix, and (iii) added weight from the modified 
cell components and energy density of the custom Li-S cells.

Practical implications: The next step for the reality of commercial Li-S batteries might be 
(i) development of high-loading sulfur cathodes, (ii) anode configuration modification, and (iii) 
design of electrochemically stable electrolytes.

Originality/value: A concise introduction of the development of the sulfur core in Li-S cells 
is provided.

Keywords: Multifunctional materials; Nanomaterials; Lithium-sulfur batteries; Cell 
configuration; Rechargeable batteries
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1. Introduction

High capacity, high energy-density power sources are 

urgently needed to meet the ever-growing demand for 

powering electronic devices and electric vehicles.  

Lithium-sulfur (Li-S) batteries are considered as one of the 

most promising next-generation rechargeable batteries for 

electrical energy storage because of their high theoretical 

specific energy of ~2500 W h kg-1, high abundance of 

sulfur, and low production cost.  

The attraction to the Li-S technology stems from the 

high-capacity sulfur. Sulfur cathode has a high theoretical 

charge-storage capacity of 1675 mA h g-1, which is one 

order of magnitude higher than that of the conventional 

transition-metal oxide cathodes [1-5]. In addition, sulfur is 

one of the most abundant elements in the earth’s crust, so 

sulfur is inexpensive (~$150 per ton) as compared to the 

currently used transition-metal oxide cathodes, such as 

lithium cobalt oxide (LiCoO2) (~$10,000 per ton) [5-8]. 

The electrochemical advantages and engineering merits of 

sulfur cathode have attracted lot of interest in making the 

Li-S batteries a reality.  

However, the high charge-storage capacity of sulfur is 

attributed to the reversible redox conversion reaction 

between active sulfur and its end discharge product Li2S. 

This two-electron electrochemical conversion reaction 

involves a dynamic, complex solid(sulfur)-liquid(polysulfides)-

solid(sulfide) phase transition [2,3,9]. Hence, the Li-S cells 

employing a conventional sulfur cathode configuration that 

contains pure sulfur, carbon black, and binder fail to 

exhibit the key benefits of Li-S cells. 

2. Scientific and engineering challenges

The electrochemical instability and irreversibility of  

Li-S cells result from many inherent properties of sulfur:  

(i) insulating nature of sulfur core, (ii) severe diffusion 

issues of polysulfide intermediates, and (iii) the redepo-

sition of insoluble Li2S2/Li2S on the electrodes during 

electrochemical cycling. The resulting low electrochemical 

utilization of sulfur and rapid loss of the active material 

hamper the commercialization efforts of Li-S battery 

technology [10-13]. 

First, the insulating nature of sulfur (condu- 

ctivity = ~10-30 S cm-2) and its end discharge product Li2S

(conductivity = ~10-14 S cm-2) limits the efficient utilization 

of the active material. The poor electrochemical utilization 

of sulfur leads to low discharge capacity with Li-S cells 

that employ the conventional sulfur cathode configu-

ration [2,4]. 

Second, during electrochemical cycling, sulfur converts 

to polysulfide intermediates (Li2Sx, with x = 4-8) that are 

highly soluble in the organic electrolyte currently used in 

Li-S cells [2,4]. These dissolved polysulfides are prone to 

diffuse out from the conventional sulfur cathode and then 

freely migrate from the cathode side to the anode side of 

the cell through the separator. The irreversible polysulfide 

migration is derived from the difference in the chemical 

potential and concentration between the two electrodes, 

which causes both the cathode and anode degrade. In the 

cathode side, the active-material loss and the insoluble 

Li2S2/Li2S deposits block electron and ion transfer. This 

exacerbates fast capacity fade and causes short cycle life. 

In the anode side, the migrated polysulfides react with Li-

metal anode and the anode deterioration starts the shuttle 

effect. The polysulfide shuttle is the origin og the low 

Coulombic efficiency of Li-S batteries [11,12]. 

During the continuous discharge and charge processes, 

a huge volume change of 80% between sulfur (density 

= 2.07 g/cm-3) and lithium sulfide (density = 1.66 g/cm-3)

along with the solid-liquid state phase transition leads to 

cathode structure degradation [2-4]. 

The abovementioned three scientific challenges lead to 

poor electrochemical utilization, low charge-discharge 

efficiency, and short operation life of Li-S cells. In order to 

address these scientific and engineering issues, many 

chemical/physical methods have been innovated to improve 

the electrochemical performance of Li-S batteries, 

especially the discharge capacity (the electrochemical 

utilization of sulfur) and cycle stability (the retention rate 

of polysulfides). Successful strategies can be divided into 

two major categories: (i) sulfur-based nanocomposites that 

improve the Li-S cell performance from the cathode active 

material [3-5,7,13-25] and (ii) cell configuration modifi-

cations that enhance the Li-S cell technology by adopting 

the materials nature of sulfur [3-5,10,26-38]. In this 

research article, we describe a concise summary of these 

two approaches. 

3. Sulfur-based nanocomposites 

Figure 1 depicts the various sulfur-based nano-compo-

sites that have been designed to enhance the electro-

chemical properties of Li-S cells, such as (i) sulfur-carbon 

nanocomposites [3-5,7,13-25,39-47], (ii) sulfur-polymer 

nanocomposites [3-5,42,48-61] and (iii) sulfur-metal oxide 

nanocomposites [3-5,62-69].

1.  Introduction

2.  Scientific and engineering challenges

3. Sulfur-based nanocomposites
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Fig. 1. Schematic configuration of a sulfur cathode with 

various sulfur-based nanocomposites 

3.1. Sulfur-carbon nanocomposites 

The development of sulfur-carbon nanocomposites 

mainly depends on the design of the carbon matrix and the 

nanocomposite synthesis process. Various porous carbon 

materials have been fabricated to serve as the conductive 

matrix for enhancing the cathode conductivity and as 

active-material containers for restricting the polysulfide 

dissolution/migration [2-5,13,18]. 

The most important achievement in the sulfur-carbon 

nanocomposite design was reported first by Nazar group in 

2009 [14]. For the first time, Li-S cells employing 84% 

sulfur-mesoporous carbon nanocomposites in the 

composite cathode exhibited a high discharge capacity of 

1320 mA h g-1 and stable cyclability and electrochemical 

reversibility. The corresponding electrochemical utilization 

of sulfur was as high as 79%. The key factor in this study is 

to impregnate sulfur into a highly ordered mesoporous 

CMK-3 carbon host at 155°C. The CMK-3 matrix poss-

esses a conductive framework and nanoporous spaces so 

that the impregnated sulfur easily reaches the electrical 

pathways and ionic channels. This facilitates fast electron 

transfer and redox reaction. The encapsulation of sulfur 

within a porous carbon host further reduces the polysulfide 

migration. This study became a key index in developing 

high-performance sulfur cathodes. A close interaction 

among the active material, electrolyte, and conductive 

matrix results in high sulfur utilization and stable 

cyclability [3,14,42]. 

The application of porous carbon substrates as the 

active-material container and polysulfide trap has attracted 

a lot of research groups in the modification of various 

porous carbon matrices, such as mesoporous carbon 

[20,42,70], microporous carbon [19,40,42] hierarchically 

porous carbon [23,24,39-42,71], and hollow carbon  

sphere [3-5,18,47].  

A systematic investigation of the effect of the tunable 

pore sizes in the mesoporous carbon indicates that the 

mesoporous carbon with a large pore volume of 4.8 cm3 g-1

and with a mesopore size of 22 nm can reduce polysulfide 

dissolution and diffusion via partial sulfur filling and 

surface functionalization [20,42]. On the other hand, the 

pore size and volume seem to have minor influence toward 

the battery chemistry under a full sulfur filling situation 

[20]. In addition to the utilization of mesoporous carbon, 

the utilization of microporous carbon in sulfur-porous 

carbon nanocomposites also shows promising cyclability 

because the narrow micropores (<2 nm) can effectively trap 

and isolate the active material within the microporous 

carbon host [19,41,42].

The progress on the porous carbon engineering and 

template design promotes the development of hierarchical 

porous carbon. The synthesized hierarchical porous carbon 

combines the advantages of mesoporous carbon and 

microporous carbon and, therefore, has adjustable nanopore 

sizes for optimizing the cell performance of sulfur-carbon 

nanocomposites [23-25,41-43,71]. Specifically, the micro-

pores aim at accommodating the active material and confi-

ning the polysulfide intermediates. The macropore and 

mesopore channels can facilitate the charge transport and 

ensure proper electrolyte penetration. Thus, the use of 

hierarchical porous carbon in the sulfur-carbon nano-

composite maximizes the sulfur utilization and also 

suppress the severe capacity fade, resulting in the excellent 

cycling performance [3-5,41-43]. 

For instance, by the way of infiltrating sulfur into the 

inner meso- and macro- hybrid porous structure while the 

outer micropores remained empty, the composite cathode 

utilizing hierarchical porous carbon delivers a high 

discharge capacity of 1412 mA h g-1, translating to a 84% 

electrochemical utilization rate, with an outstanding 

capacity retention rate of 77% after 500 cycles [71]. On the 

other hand, the hollow carbon sphere possesses an interior 

void space for storing the active sulfur, which differs from 

the hierarchical porous carbon that consists of various 

nanoporous spaces and channels. The hollow carbon sphere 

restricts the active material within the core and has  

a porous shell for the continuous supply of lithium ions and 

electrolyte [3-5,18,42]. Jayaprakash et al. pioneered the 

study of utilizing porous hollow carbon in sulfur-carbon 

nanocomposites for Li-S batteries. The resulting Li-S cells 

employing porous hollow carbon@sulfur composites 

exhibit a high capacity retention of 91% after 100  

cycles [47]. 

3.1.Sulfur-carbon nanocomposites
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3.2. Sulfur-polymer nanocomposites 

In addition to carbon, various polymer networks have 

also been used in synthesizing the sulfur-polymer 

nanocomposite, such as polyacrylonirtile (PAN) [48-51] 

polyaniline (PANi) [57-60], polypyrrole (PPy) [52-56] 

polythiophene (PTh) [61], and poly(3,4-(ethylene-

dioxy)thiophene) (PEDOT) [72]. The advantages of using 

polymers is associated with their functional groups that 

have strong interaction with the polysulfide species, 

resulting in promising cycling performance of Li-S 

batteries.  

In 2002, the first sulfur-polymer nanocomposite, sulfu-

rized polyacrylonitrile (SPAN), was reported by Wang et 

al. who heated S/PAN mixtures at 300oC for 6 h [48]. In 

this process, -CN functional groups formed heterocycles, 

rendering the backbone to form a conjugated  -system like 

the conductive polymer, polyacetylene [48,49]. Therefore, 

the active sulfur could be intercalated and confined within 

the polymer main chain. The resulting molecular-level 

SPAN nanocomposites exhibited a high reversible capacity 

of 600 mA h g-1 after 50 cycles with a gel electrolyte [48]. 

Afterward, a lot of follow-up studies focused into the 

investigation of various sulfur-polymer nanocomposites. 

Among these polymers, the intrinsically conductive poly-

mers (ICPs), such as PANi, PPy, and PEDOT, are widely 

used in sulfur-polymer nanocomposites [48,49,53,55-

62,72]. The advantages of using ICPs are their facile 

processing ability, mixed ionic/electronic conductivity, and 

strong affinity toward polysulfides. As a result, ICPs 

promote the overall cell performance and simplify the 

complex nanocomposite synthesis processes. 

A novel conductive S-PPy composite material prepared 

by the chemical polymerization method was first presented 

by Wang et al. in 2006 [52]. The initial discharge capacity 

and cyclability of S-PPy nanocomposites were greatly 

improved. The main reasons for the improved electro-

chemical properties are the use of conductive PPy coating 

on the sulfur particles. The PPy coating functions as  

a conductive binder, ensureing the close connection among 

particles and enhancing the cathode conductivity. Also, the 

PPy coating could function as an absorption layer for 

reducing the dissolution of polysulfides into the electrolyte 

[42,52]. In addition to PPY, PANi is another popular ICP 

host in sulfur-polymer nanocomposites. Self-assembled 

PANi nanotubes were utilized to encapsulate the active 

sulfur as a soft approach for battery chemistry 

improvements [60]. The resultant materials form a 3D, 

cross- linked, structurally stable S-PANi nanocomposite, in 

which the main chains of PANi are interconnected with 

inter- and/or intra-chain disulfide bonds, resulting in a 

confinement of polysulfides. The structural design of 

nanocomposites provides the Li-S batteries with enhanced 

cycle stability and rate capability. The reversible discharge 

capacity retained 432 mA h g-1 after 500 cycles. Further 

progress is a S-PANi nanocomposite with a yolk-shell 

structure [57] The internal void space that was produced 

from the partial vulcanization with PANi to form a cross-

linked structure can accommodate the active material and 

the volumetric expansion of sulfur during the continuous 

discharge and charge processes. The outer layer of condu-

cting polymer improves the ionic/electronic conductivity, 

ensureing an excellent active material utilization. The yolk-

shell structure also functions as a polysulfide container for 

avoiding the irreversible loss of the active material. 

Therefore, the yolk-shell structure of S-PANi nano-

composites effectively preserves the structural integrity and 

greatly improves the cycling performance. 

3.3. Sulfur-metal oxide nanocomposites 

Recently, metal oxides have been employed as 

absorbents, coatings, and catalyzers to retard the migration 

of polysulfides and retain them within the sulfur-metal 

oxide nanocomposites. The investigated metal oxides 

include Mg0.6Ni0.4O [63], La2O3 [73], TiO2 [66,74,75], 

MnO2 [67], Al2O3 [76,77], and SiO2 [64]. 

The application of nanosized Mg0.6Ni0.4O particles in 

sulfur cathodes has evidenced that both the discharge 

capacity and cycling stability can be improved [63]. The 

added Mg0.6Ni0.4O nanoparticles increase the porosity of 

the resulting sulfur cathodes for absorbing polysulfides. In 

addition, Mg0.6Ni0.4O has catalytic effect for promoting the 

redox reaction during cell cycling [5,63]. Nazar group also 

reported sulfur-manganese dioxide nanosheets (S/MnO2) as 

sulfur-metal oxide nanocomposites that exhibit extremely 

long cyclability over 2000 cycles with very low fading rate 

of 0.036% per cycle [67]. This excellent cyclability is 

attributed to the unique mechanism. An active polythionate 

complex serves as an anchor and a transfer mediator to, 

respectively, curtail the dissolution of polysulfides and 

control the deposition of Li2S2/Li2S [67]. However, the 

sulfur loading is only 0.75-0.9 mg cm-2, which should 

provide certain contribution to the amazing cycle stability. 

Similar issue could be found in the sulfur-metal oxide 

nanocomposite with a yolk-shell structure following the 

idea of the hollow carbon@sulfur composites and the  

yolk-shell structure S-PANi nanocomposites [47,57]. The 

sulfur-TiO2 yolk-shell nanocomposites exhibit desirable 

cyclability (> 1000 cycles) [66]. However, the sulfur 

loading is as low as 0.4-0.6 mg cm-2, failing to meet the 

standard for practical applications.  

3.2.  Sulfur-polymer nanocomposites

3.3. Sulfur-metal oxide nanocomposites
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4.  Cell Configurations

4.1.  Porous current collectors
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4.2. Bifunctional interlayers 

The polymeric separator with a high porosity is utilized 

in Li-ion battery to avoid the internal short circuit and to 

allow fast lithium-ion transport. Nonetheless, in the case of 

Li-S cell, this porous membrane cannot stop the severe 

polysulfide migration from the cathode side to the anode 

side of the cell. Thus, the severe polysulfide migration 

would result in an irreversible loss of active material and 

the polysulfide shuttle during electrochemical cycling 

[28,32,33,35,82-87].  

Our research group proposed a new concept that  

a bifunctional interlayer inserted between the polymeric 

separator and sulfur cathode could limit the free penetration 

of polysulfide species [35]. In addition, the bifunctional 

interlayer provides extra electron pathways. This upper 

current collector significantly diminishes the internal 

resistance of the sulfur cathode and improves sulfur 

utilization. During electrochemical cycling, the bi-

functional interlayer aims at first trapping the migrating 

polysulfides and then transferring electrons and electrolyte 

to continuously utilize the trapped active material. As  

a result, the active material is well stabilized within the 

cathode region of the cell and could be continuously 

utilized during cell cycling [3,4,35,36]. Therefore, the pure 

sulfur cathode assembled in the Li-S cells using the 

bifunctional separator shows superior active material 

utilization, cyclability, and rate performance.  

This novel cathode design has promoted the 

development of various interlayer configuration with 

different materials, such as (i) porous carbon substrates 

[32,87-89], (ii) carbon nanofiber/carbon nanotube frame-

work [26,27,36,83,86], (iii) conducting polymers [6,90,91], 

(iv) carbon/metal oxide hybrid materials [92], (v) porous 

metal foam [85], and (vi) carbonized free-standing 

substrates [28,82,84]. 

Recently, Balach et al. developed a mesoporous carbon 

interlayer and investigated its electrochemical performance 

by tuning the pore volume and surface area [89]. The 

research findings indicate that the pore volume of the 

mesoporous carbon exerts a significant influence on the 

electrochemical properties of the interlayer-type sulfur 

cathode. The cell employing the mesoporous carbon 

interlayer with a large pore volume of 3.23 cm3 g 1 and  

a high surface area of 900 m2 g 1 shows initial discharge 

capacities of 1364, 1060, and 966 mA h g-1 and retains high 

reversible capacities of 1015, 746, and 650 mA h g 1 after 

200 cycles at, respectively, 0.2, 0.5 and 0.1°C rates. This 

indicates that the strong tortuosity and conductive network 

of the bifunctional interlayers is able to, respectively, 

suppress the severe polysulfide migration and enhance the 

capacity retention.  

The improved electrochemical stability and reversibility 

of the interlayer-type Li-S cells lead to good cycling 

performance of Li-S batteries. In spite of the great progress 

with the interlayer, the bifunctional interlayer inserted in 

cell eventually is an additional cell component. Thus, the 

weight of the interlayer should be kept as low as possible 

while preserving a high polysulfide-trapping capability. 

4.3. Sandwiched Cathodes 

The development and application of porous current 

collectors (2011-2013) [4,5,10,26,36-38,40,78-83] and

interlayers (2012-2014) [3-5,26,37,83-91] have inspireed 

the development of a sandwiched cathode configuration 

since 2013. Our group, therefore, designed the sandwiched 

cathode that integrates the functions of a bifunctional 

interlayer and a porous current collector into one sulfur 

cathode [82,83]. 

The basic configuration of a sandwiched cathode could 

have a self-weaving MWCNT paper as the porous current 

collector that can work as a polysulfide locker. Another 

layer of MWCNT paper, on the other hand, is the interlayer 

that functions as a barrier to intercept the migrating 

polysulfides [83]. The active material Li2S is localized in 

between the two self-weaving MWCNT papers. With the 

sophisticated configuration, the Li-S battery displays 

promising sulfur utilization and superior cyclability. 

Carbonized natural materials employed as sandwiched cell 

configurations have also received much attention. The free-

standing carbonized eggshell membranes were used as the 

polysulfide reservoir with dissolved polysulfides as the 

active material [82]. In other words, the carbonized 

eggshell membranes stabilize polysulfides within two 

sandwiched electrodes. Consequently, the Li-S cell even 

with high loadings (sulfur loading = 3+mg cm-2) accom-

plishes excellent electrochemical performance by using the 

sandwiched cell structure.  

Again, a successful cell configuration could lead to  

a series of new studies. Various sandwiched cathodes with 

various active material, such as Li2S, pure sulfur,  

and polysulfide catholyte, have been applied in Li-S  

cells and have shown promising electrochemical 

performances [26,82,83,93-96].

4.3.  Sandwiched cathodes

4.2. Bifunctional interlayers
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4.4. Functional Separators 

Very recently, our group has pioneered the investi-

gation of carbon-coated separators, which exponentially 

improve the performance of Li-S batteries [6,29-31,34]. 

The prototypical functional separator has the a layer of the 

commonly used carbon Super P firmly attached onto one 

side of a commercial separator while the other side 

remained clean and insulating [30]. The resulting carbon-

coated separator (C - coated separator) has its carbon-

coated side facing the pure sulfur cathode for suppressing 

the severe polysulfide diffusion. Therefore, the active 

material could be stabilized within the cathode region. 

Moreover, the C - coated separator that adopts the mecha-

nical strength of the commercial separator is mechanically 

flexible and robust. Most importantly, the ultralight-weight 

characteristics eliminates the weight concern encountered 

by other novel or modified cell components, which makes 

us one step closer to the reality of Li-S batteries.  

The Li-S cells employing the C-coated separator and 

pure sulfur cathodes are able to approach a high initial 

discharge capacity of 1389 mA h g-1 and a reversible 

capacity of 828 mA h g-1 after 200 cycles [30]. Additio-

nally, the C-coated separators also inhibit the self-discharge 

behaviors of Li-S batteries. The outstanding performance 

results from the C-coated separator that acts as (i) a barrier 

to intercept and trap the migrating polysulfides and (ii) an 

upper current collector to reutilize the trapped active 

materials. Thus the C - coated separator improves the dyna-

mic and static stability of Li-S batteries that uses a pure 

sulfur cathode [4,5,30].  

The C coating attached onto the flexible separator could 

also suppress the severe polysulfide migration. Thus, the 

application of the C - coated separator also allows the 

use of pure sulfur cathode in Li-S cells [5,6,29-32,34, 

89,94]. The successes of the C - coated separators open the 

door for functional separators. Different custom functional 

separators have been investigated extensively by utilizing 

different coating materials, including (i) porous carbon [29] 

(ii) graphene (oxide), [98,100] (iii) MWCNT, [34]  

(iv) polymer, [99] and (vi) carbon/polymer mixtures 

[6,29,97] The development of functional separator paves 

the way for developing high-performance Li-S batteries at 

an affordable cost. 

4.5. Summary 

Overall, various cathode configuration modifications 

and designs have evidenced their capability to utilize the 

materials nature of sulfur for improving the electro-

chemical performance of Li-S cells. The custom cathode 

configuration allows polysulfides to migrate within the 

cathode region of the cell, stabilizing the active material at 

the most electrochemically favorable sites in the cathode 

region of the cell and thereby facilitating the electro-

chemical redox reaction. 

5. Conclusions 

The inexpensive Li-S batteries with a high specific 

capacity and energy density have triggered the revolution 

in rechargeable batteries. However, persistent drawbacks 

are slowing down their commercialization. Current 

technologies including nanocomposite development and 

cell configuration design have greatly ameliorated the 

overall electrochemical performance of Li-S batteries. The 

next step for the reality of commercial Li-S batteries is  

(i) the development of high-loading sulfur cathode, (ii) the 

anode configuration modification, and (iii) the design of 

electrochemically stable electrolytes. In order to realize 

these goals, a good wedding of academic research and 

industrial research is needed.  
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