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Purpose: Disabled persons, who wants to learn to drive a car, are often forced to buy
own car and adapt it to their personal abilities. The other chance for them is to use the
car simulator. Such simulator was built, but one of the most important issues was to make
the experiences as realistic as possible. All parameters have been set experimentally and
tested by many drivers. It was necessary to find a compromise between safety and reality.
In order to protect the simulator from damages, it was necessary to build the computer
model and to conduct the simulation virtually before setting up the parameters of the real
simulator.

Design/methodology/approach: In the paper is presented the method of modelling the
Steward platform (which is the base of the car simulator) in LabView Robotics software.
The application uses the CAD model of the platform and conducts digital simulation of its
movements to show all possible positions of the simulator. The simulation tests also have
been done earlier, conducted in the NX program, during the design process. These results
are used as the reference for the current simulation in order to check the correctness of
the LabView model.

Findings: The digital model of the simulator allows analysing the Steward platform
workspace with the high accuracy. The collision in the virtual world will not cause any
damages, which could be possible in real tests. This method of verification shows also if
there is possible to extend the platform’s workspace.

Research limitations/implications: The variety of experiments concerning static,
kinematic and dynamic parameters of the platform has been done using the virtual model.
Such experiments are especially dangerous for real simulator, because of extreme values
of parameters like velocity or acceleration. The real static tests should be performed slowly
and hence there is time to react when the signs of damage appear, but during the real
dynamic tests, the time for reaction is very short and it is easier to destroy the simulator.

Practical implications: The virtual tests of system dynamics are divided into two
stages. In the first one, the values of velocities and accelerations are set by the software in
the motion parameter window. It is measured the impact on the driver. In the second stage
it is used the virtual model of mechanical part of the simulator. The UDP protocol is used
to communicate with the control system and obtain the motion parameters.
Originality/value: The tests allow checking the real parameters of the simulator work.
The hazards and improper parameter, which cannot be detected in real test, have been
revealed. The results allow setting more proper dynamic parameters and ensuring the
better usage of the simulator workspace.
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1. Introduction

The car simulator for a driving school for disabled
persons (Fig. 1) was designed a few years ago [1-4]. All
parameters of movement of the platform have been set and
the right engine with power reserve has been used. But
because of the lack of a good tool enough for the
simulation of vehicle movement in real time the first run
was made very carefully. The simulator was steered from
the outside and all the motion parameters of the simulator,
important for the design, were tested. For the driver safety
reasons, before the first start the dynamic performance of
engines was reduced. In the next test it was increased and
measured the acceleration acting on the simulator and the
driver.

Fig. 1. Car simulator for driving school for disabled persons
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It should be done very careful because the driver was
sitting in the simulator. The tests took a very long time and
require simultaneous work of many people. Another
problem was the other driver behaviour. Even the same
driver has not driven the same route twice just to be able to
compare results with different parameters engines.
However we set the parameters so that the driver was safe
and driving feelings were similar to driving a real car [5,6].

Since that time the work on improving the performance
of the simulation is continuing. They are used newer and
newer tools to set better parameters. National Instruments
LabVIEW Robotics is a new module that allows not only
performing the dynamic tests but also importing a CAD
model to obtain its appropriate parameters and execute
dynamic motion simulation.

2. Model simulator in the LabVIEW
robotics

In recent years newer and newer programs to simulate
the movement of machines were created. It is possible to
connect an external source of data and programs from the
virtual reality [7-9]. In this paper is presented the method
of modelling and the use of Labview Robotics. It is
described the Stewart platform model and the method of
checking its parameters and the example of connection
with the real controller.

2.1. Stewart platform modelling

In mostly of the programs allowing for motion
simulation the modelling process is very complex. Usually
one can use only primitives like a box, cylinder and sphere
but modelling is very time consuming. There are many
CAD programs that support drawing and have additional
libraries containing models of typical elements used in
mechanical engineering. These programs can export files in
many standards. LabVIEW Robotics can import some of
them.

At the beginning it was planned to use the file on the
basis of which the simulator was made (Fig. 2). The model
is very detailed and contains all the information on the
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constituent parts such as screws, rails, shell and holes. But Easy to see in Fig. 3 that 18 pieces fixed together can be
the import to LabVIEW is very difficult. It was noticed that replaced by one. This model is easier to calculate and gives
a lot of elements are fastened together and move together. the same results. By selecting the menu “Analysis”, and next
So, all the components were linked together in one piece. “Measure bodies”, it is possible to check all the mass and
Such substitute element can have different mass and inertial parameters (Fig. 4).

inertial parameters. In this case the NX CAD program was
used to correct them.

It should be remembered that each additional element
makes mathematical description more complicated. This is
important especially for real time visualization. It often
happens that the fixed elements, especially generated
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This file was imported into LabVIEW Robotics. CAD
model is imported into LabVIEW Robotics by the tool
“Robot Simulation Model Builder” (Fig. 6). It is a difficult
and two-stage process. First one have to import geometry
from the *.wrl file. In the “Model Library” a new model is
added and a new window “CAD Model Import” opens
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(Fig. 7). Because in the VRLM file is only included
information about surfaces, it is necessary to indicate
which surface are in one body and what kind of solid it is.
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Fig. 9. Robotics Environment simulator Wizard window

After identifying all features, one should return to the
“Robot Simulation Model Builder” (Fig. 6). Now it is
possible to enter new model parameters obtain from the
“Measure Body” module (Fig. 7). Unfortunately, one has to
redefine the connection between bodies, their location, type
and drive (Fig. 8).

Finishing this procedure allows obtaining the model
that could be used in many different LabVIEW Robotics
Projects. It is presented in the Fig. 9. Such prepared model
of the simulator was used in virtual tests presented below.
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* Select Window>>Show Block Diagram or press <Ctrl-E> to view the block diagram, where you
can add or modify simulation code. Add controls and indicators to the front panel of this Vi to
pass data into and out of the simulation code.

* The manifest file must exist in same directory as the vproj file.
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2.2. Stewart platform basic movement

In Fig. 10 is shown the “Front Panel” window and the
“Block Diagram” level. These are the basic applications
that contain all necessary elements needed to run motion
simulation of the platform of the simulator.

N a [E=E

43 LabVIEW Robotics Environment Simulator

Fig. 11. Stewart Platform in LabVIEW Robotics
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Fig. 12. Program for determining the length of platform legs
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On the “Front Panel” are six sliders. Each of them is
responsible for the movement of one of the actuators. By
changing its position it is possible to virtually control the
movement of the simulator platform.

An example of such control is shown in Figure 11. It is
very easy to control each actuator separately. When one
wants to move the platform to the desired position, the
length of each of the actuators must be determined.

This program could be used also to determine the length
of the legs, what is presented in Figure 12. Below is pre-
sented the LabView block program.

By connecting together these programs it is possible to
enter the position and orientation of the platform in the
Cartesian coordinates. It facilitates the collaboration with
other programs, and to determine the workspace of the
platform what is presented in Figure 13.

In Figure 13 there are two workspaces. Light green is
the safe work space, now used in the real simulator. The
blue area (presented as the contour) is the area drawn in
LabVIEW Robotics. One should notice that the space
created in LabVIEW is larger and has a different shape.

Fig. 13. Comparison of workspaces

2.3. Connection to simulator

The simulation was prepared to run in real time and for
connecting it to the existing control system. The control
system consists of 3 PC, Power Panel B & R and
ACOPOSmulti motor controllers. In this system it was
necessary to use the network communication. The data is
transferred between computers via an Ethernet network.
UDP was used to ensure adequate transmission speed
(Fig. 14). UDP sends information and any device plugged
into the network can receive it. This is good because a new
device could be plugged without changing the software on
the others.
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The UDP information is sent as a frame and if one
wants to read the information, he needs to know how to
build a frame. For this reason the program (Fig. 15) has
two separate loops. One used to read data from the UDP,
and other to translate these data.
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Fig. 15. LabView program of the UDP receiver

The presented program, prepared in the LabView
environment, allows conducting virtual tests of the
simulator and gathering data concerning the motion
parameters.

3. Conclusions

It was created a lot of programs enabling not only the
visualization but the simulation of designed objects. Many
CAD programs include such modules, but it is difficult in
them to model complex control systems. It is possible to
enter simple functions or connect to an external data source
[12,13]. LabVIEW provides a lot of tools and functions
which are suitable for such tasks. They could be mixed to



match different applications even written in different
environments [14-17].

The basic problem considered with the simulation
programs is the underdeveloped part of the auxiliary
drawing which imports standard file formats what helps to
simplify the task. Particular attention should be paid to the
correct determination of the joints.

Additional information

Selected issues related to this paper are planned to be
presented at the 22" Winter International Scientific
Conference on Achievements in Mechanical and Materials
Engineering Winter-AMME’2015 in the framework of the
Bidisciplinary Occasional Scientific Session BOSS2015
celebrating the 10™ anniversary of the foundation of the
Association of Computational Materials Science and
Surface Engineering and the World Academy of Materials
and Manufacturing Engineering and of the foundation of
the Worldwide Journal of Achievements in Materials and
Manufacturing Engineering.
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