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ABSTRACT

Purpose: The analysis of the electromagnetic wave transmission having a wave length near infrared 
propagating in multilayer structures made of materials GaP and CaF2. Analyzed was the influence of 
periodicity distribution of layers in the material properties and the presence of photonic forbidden gap 
for selected wavelengths of the electromagnetic wave.

Design/methodology/approach: Maps transmission, which was performed by the analysis were 
obtained using a matrix method. Was investigated wave propagation wavelength range of infrared 
radiation in periodic binary multilayers and aperiodic Severin and Thue-Morse superlattices.

Findings: It has been shown the structure of the transmission band depending on the type of polarization 
of the multilayer system. Properties of Thue-Morse superlattices were similar to binary superlattices but 
differed from the behavior of electromagnetic waves in aperiodic Severin superlattices.

Research limitations/implications: The simulation was not considered the impact of losses in the 
material for propagating electromagnetic wave.

Practical implications: Multilayer materials, which have photonic band gap, can be used as filters 
for electromagnetic radiation can improve the performance of night vision or electromagnetic waves 
multiplexers.

Originality/value: Transmission properties of multilayers were examined in visible light but not for 
infrared light.
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METHODOLOGY OF RESEARCH, ANALYSIS AND MODELLING

 

1. Introduction 
 
Photonic crystals, and in particular their subgroup - quasi one 

dimensional multilayer structures [1-5] due to their special 
material properties are of great interest. Using them as filters of 

electromagnetic radiation is particularly important that certain 
electromagnetic wavelengths do not propagate in these structures. 
These structures are usually made of alternating dielectric layers, 
where the thickness, type of material and the order of applying the 
layers have a critical role in their filtration properties. Production 
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of the superlattice is designed to permit precise control of the 
structure [6-32], which allows you to create materials with 
precisely defined characteristics. 

In order to reduce the cost and time needed to perform the 
actual materials shall be carried out computer simulations of the 
properties of the superlattice. Most frequently the simulations 
using the FDTD algorithm or matrix method (transmission maps) 
are used. Most research has focused on the study of the 
transmission in the wavelength range of visible light. It seems 
well founded analysis of the properties of these materials for 
closer infrared, the more so because for this wavelength range has 
already been received composite materials called metamaterials 
having a negative refractive index. The existence of such 
materials, Veselago predicted in his theoretical work in 1968 [33], 
but their production came about only in 2000 [34], which in 
consequence led to considerable interest in the global research 
centers study the properties of these materials [35-44].  

The work we use the analysis of the properties of multilayer 
structures using the matrix method of the algorithm described in [2]. 

You can specify the matrix equation (1), in which there is an 
electromagnetic wave incident on the multilayer structure of the 
electric field intensity Ein

(+), a part of it propagates through 
superlattice Eout

(+), and part is reflected back Ein
(-), the coefficient 

Eout
(-) is introduced to preserve the dimensions of the matrix, and 

its value is always zero.  
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where  is wavelength of the incident electromagnetic wave, by j 
is define, determined from Snell's law, the angle of incidence of the 
electromagnetic wave to layer j, nj - refractive index of the layer j, dj 
- thickness of the layer j, and Fj,i is a matrix that describes the 
behavior of the electromagnetic wave on the verge of materials.  

Matrix Fj,i for the polarization P is defined as: 
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The S-type polarization matrix Fj,i is defined as: 
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From equation (1) can be determined the material properties 
of the matrix describing the structure. 
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The matrix (8) allows for determination of the coefficient of 

transmission for a specific environment (nin and nout) and the wave 
propagation direction ( in, out - is determined using Snell law for 
the structure) by the equation: 
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The results are shown in the form of a transmission maps 

T( , ), where T = 1 (white color) means full transmission and 
T = 0 (black) its absence. The vertical axis determines the angle 
of incidence of the electromagnetic wave relative to the normal to 
the surface of quasi-structure, and the horizontal axis the 
wavelength of the incident electromagnetic wave. 

Calculations were performed for binary superlattice structure 
as the reference with the L = 8 generation number defined by: 

 
ABABABABABABABAB8

B . (10) 
 
Then analysed aperiodic Severin superlattice [45] with L = 4 

and structure. 
 

ABBBABBBABBBABAB4
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Thue-Morse superlattice [46-52] with L = 4 and structure 
 

ABABBAABBABAABBA4
TM . (12) 

 
The results are shown in Figures 1-8 and Figures 11-14. 

 

 
 

Fig. 1. Binary superlattice transmission map for L = 8 and 
polarization P 

 

 
 

Fig. 2. Binary superlattice transmission map for L = 8 and 
polarization S 
 

 
 
Fig. 3. Binary superlattice transmission map for L = 8, 
polarization P and metamaterial equivalent of GaP 
 

 
 

Fig. 4. Binary superlattice transmission map for L = 8, 
polarization S and metamaterial equivalent of GaP 

 
 

Fig. 5. Severin superlattice transmission map for L = 4 and 
polarization P 

 

 
 

Fig. 6. Severin superlattice transmission map for L = 4 and 
polarization S 

 

 
 

Fig. 7. Severin superlattice transmission map for L = 4, 
polarization P and metamaterial equivalent of GaP 
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Fig. 8. Severin superlattice transmission map for L = 4, 
polarization S and metamaterial equivalent of GaP 
 

 
 

Fig. 9. The dispersion of the refractive index for the CaF2 [4] 
 

 
 

Fig. 10. The dispersion of the refractive index for the GaP [4] 

 
 

Fig. 11. Thue-Morse superlattice transmission map for L = 4 and 
polarization P 

 

 
 

Fig. 12. Thue-Morse superlattice transmission map for L = 4 and 
polarization S 

2. Research
 
Multilayer structures made of two materials of equal layer 

thicknesses, respectively dA = dB = 100 nm, and the total thickness 
of each of the structures is d = 1.6 m. 

As material A was taken CaF2 with a refractive index defined 
by the dispersion shown in Fig. 9 [4]. The material B was GaP, 
which is described with the refractive index depending on the 
wavelength shown in Fig. 10 [4]. Figures 3, 4, 7, 8, 13, 14 
illustrate the transmission maps specified for material B having  
a negative refractive index as defined by the nB2( ) = - nB( ) for 
different types of polarization. Transmission characteristics were 
examined at wavelengths (0.6; 11) m for the near infrared.  

 

The calculations were made for the types of polarization P and S. 
The analysis was conducted for quasi one-dimensional lossless 
materials, and the environment material was air.  

The simulation was performed for three structures: binary - 
periodic superlattice (Figs. 1-4) and Severin (Figs. 5-8) and  
Thue-Morse (Figs. 11-14) aperiodic multilayers. 

 

 
 

Fig. 13. Thue-Morse superlattice transmission map for L = 4, 
polarization P and metamaterial equivalent of GaP 

 

 
 

Fig. 14. Thue-Morse superlattice transmission map for L = 4, 
polarization S and metamaterial equivalent of GaP 
 
 
3. Conclusions 
 

Designated transmission maps can observe a significant effect 
on the polarization of the structure filter properties. A change of 
material B in superlattices on the metamaterial equivalent alters 
the properties of the filter structure. Transmission of studied 

multilayers constructed entirely of right-handed materials is 
similar, there are slight variations in the band structure. It can be 
seen the presence of photonic band gap which is typical for 
photonic materials. Transmission of binary superlattices is very 
similar to that occurring in the Thue-Morse structure. Bandwidths 
decrease with decreasing length of the incident electromagnetic 
wave. 
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